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Thalamocortical excitability modulation guides
human perception under uncertainty
Julian Q. Kosciessa 1,2,3✉, Ulman Lindenberger 1,2 & Douglas D. Garrett 1,2✉

Knowledge about the relevance of environmental features can guide stimulus processing.

However, it remains unclear how processing is adjusted when feature relevance is uncertain.

We hypothesized that (a) heightened uncertainty would shift cortical networks from a

rhythmic, selective processing-oriented state toward an asynchronous (“excited”) state that

boosts sensitivity to all stimulus features, and that (b) the thalamus provides a subcortical

nexus for such uncertainty-related shifts. Here, we had young adults attend to varying

numbers of task-relevant features during EEG and fMRI acquisition to test these hypotheses.

Behavioral modeling and electrophysiological signatures revealed that greater uncertainty

lowered the rate of evidence accumulation for individual stimulus features, shifted the cortex

from a rhythmic to an asynchronous/excited regime, and heightened neuromodulatory

arousal. Crucially, this unified constellation of within-person effects was dominantly reflected

in the uncertainty-driven upregulation of thalamic activity. We argue that neuromodulatory

processes involving the thalamus play a central role in how the brain modulates neural

excitability in the face of momentary uncertainty.
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Adaptive behavior requires dynamic adjustments to the
perception of high-dimensional inputs. Prior knowledge
about the momentary relevance of specific environmental

features selectively enhances their processing while suppressing
distractors1, which can be implemented via gain modulation in
sensory cortex (for reviews see refs. 2,3). Crucially, however, a
priori information regarding feature relevance is not always
available, and how the brain flexibly adjusts the processing of
complex inputs according to contextual uncertainty remains
unclear4 (Fig. 1a).

We hypothesize that such uncertainty-related processing
adjustments involve a switch between different cortical states
(Fig. 1b). Specifically, selective gain control has been associated
with phasic (i.e., phase dependent) inhibition of task-irrelevant
stimulus dimensions during cortical alpha (~8–15 Hz) rhythms5.
Conceptually, such rhythmic modulations of feedforward
excitability6,7 provide temporal “windows of opportunity” for
high-frequency gamma synchronization in sensory cortex8 and
increased sensory gain9. However, specifically increasing the
fidelity of single stimulus dimensions is theoretically insufficient
when uncertain environments require joint sensitivity to multiple
stimulus features10,11. Alternatively, transient increases to the
tonic excitation/inhibition (E/I) ratio in sensory cortex provide a
principled mechanism for such elevated sensitivity to—and a
more faithful processing of—high-dimensional stimuli12. In
electrophysiological recordings, scale-free 1/f slopes are sensitive
to differences in E/I ratio13 and vary alongside sensory
stimulation14. Relatedly, sample entropy provides an
information-theoretic index of signal irregularity that is highly

sensitive to scale-free content and may thus similarly track
excitability15. However, whether contextual demands modulate
scale-free activity and/or entropy is unknown. We hypothesize
that heightened uncertainty shifts cortical states from a regime of
rhythmic excitability modulations in the alpha band (associated
with a modulation of gamma-band activity) towards tonic
excitability increases (as indexed via increased scale-free irregu-
larity and neural entropy; Fig. 1b).

Such “state switches” in cortical network excitability may be
shaped by both neuromodulation and subcortical activity
(Fig. 1c). Neuromodulation potently alters cortical states and
sensory processing3,16, and noradrenergic arousal in particular
may permit high sensitivity to incoming stimuli17. Yet, non-
invasive evidence is lacking for whether/how neuromodulation
affects contextual adaptability. Moreover, despite early proposals
for thalamic involvement in attentional control18, studies have
dominantly focused on cortical information flow (e.g., ref. 19), at
least in part due to technical difficulties in characterizing thalamic
contributions. Crucially, the thalamus provides a nexus for the
contextual modulation of cortical circuits20, is a key component
of neuromodulatory networks17,21, and robustly modulates sys-
tem excitability via rhythmic and aperiodic membrane
fluctuations22,23. However, human evidence is absent for a central
thalamic role in cortical state adjustments at the service of
behavioral flexibility.

Here, we aimed at overcoming this lacuna by assessing
the effects of contextual uncertainty during stimulus encoding
on cortical excitability, neuromodulation, and thalamic
activity in humans. We performed a multi-modal EEG-fMRI
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Fig. 1 Hypotheses and task design. a We probed whether uncertainty modulates cortical excitability during stimulus processing to guide subsequent
evidence accumulation. We hypothesized that when cues specify the relevance of a single stimulus feature in advance, a low excitability regime may
optimize subsequent choices via the targeted selection of relevant—and inhibition of irrelevant—information. In contrast, higher excitability may afford the
concurrent sampling of multiple relevant features when the relevance of specific features is uncertain, but at the cost of a relative reduction of subsequently
available evidence for any individual feature. b Hypothesized phasic and tonic excitability modulation in cortex as a function of uncertainty. Rhythmic
(alpha) fluctuations in EEG are thought to reflect alternating phases of relative excitatory (E, Exc.) and inhibitory (I, Inh.) dominance5,58,122, yielding
variations in high-frequency (gamma) power as a function of low-frequency phase. In contrast, static increases in excitatory-to-inhibitory tone may alter
aperiodic signal dynamics, reflected in a flattening of spectral slopes in the frequency domain13 and relative increases in sample entropy as an index of
signal irregularity. c We hypothesized that increasing probe uncertainty would induce a joint increase in neuromodulation and thalamic activity, associated
with shifts from a phasic gain control mode (implemented via neural alpha rhythms) toward transient increases in excitatory tone (as indicated by
aperiodic cortical activity). Participants participated in both an EEG and an fMRI session, allowing us to assess joint inter-individual differences in fast
cortical dynamics (EEG) and subcortical sources (fMRI). d Participants performed a Multi-Attribute Attention Task (“MAAT”) during which they had to
sample up to four visual features in a joint display for immediate subsequent recall. On each trial, participants were first validly cued to a target probe set
(here direction and size). The stimulus (which always contained all four features) was then presented for 3 s, and was followed by a probe of one of the
cued features (here, which direction was most prevalent in the stimulus). The number and identity of simultaneous pre-stimulus cues were fixed for blocks
of 8 trials to experimentally manipulate the level of expected (ongoing) probe uncertainty.
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(electroencephalography-functional magnetic resonance imaging)
experiment, measuring the same participants in two separate
sessions, to capture both fast cortical dynamics (EEG) and sub-
cortical activity (fMRI), while recording pupil dilation as a non-
invasive proxy for neuromodulatory drive24. Participants per-
formed a parametric adaptation of the classic dot motion task25,
in which individual stimulus elements were defined by a con-
junction of color, size, direction and luminance features (Fig. 1d).
By presenting valid cues (1–4 cues shown simultaneously) in
advance of stimulus presentation, we manipulated the number of
stimulus dimensions that are task-relevant in a given trial, while
holding the sensory features of the task (i.e., its appearance on the
screen) constant. Following the presentation of the multi-
attribute stimuli, participants were probed with respect to a
single-target feature that was selected from the cued set. By
applying drift-diffusion modeling to participants’ probe-related
choice behavior while jointly assessing electrophysiological sig-
natures of corresponding decision processes, we found that
uncertainty during sensation reduced the rate of subsequent
evidence integration, suggesting reductions in the precision of
encoded target information. This uncertainty-related reduction in
available evidence following the probe was associated with
increased cortical excitability during the (pre-decisional) stimulus
presentation period, as indexed by joint low-frequency (~alpha)
desynchronization and high-frequency (~gamma) synchroniza-
tion, and an increase in E/I ratio (as indicated by increased
sample entropy and flatter scale-free 1/f slopes). These excitability
adjustments, potentially reflecting a joint encoding of multiple
features during periods of higher uncertainty, occurred in parallel
with increases in pupil-based arousal. Finally, inter-individual
differences in the modulation of cortical excitability, drift rates
and arousal were jointly associated with the extent of thalamic
blood oxygen level-dependent (BOLD) signal modulation,
pointing to the importance of subcortical mechanisms for cortical
state adjustments. Together, these findings suggest that neuro-
modulatory processes involving the thalamus shape cortical
excitability states in humans, and that a shift from alpha-
rhythmic to aperiodic neural dynamics adjusts the processing
fidelity of external stimuli in service of upcoming decisions.

Results
We developed a dynamic visual Multi-Attribute Attention Task
(“MAAT”) to uncover rapid adjustments to stimulus processing
and perceptual decisions under expected uncertainty (Fig. 1d).
Participants visually sampled a moving display of small squares,
which were characterized by four stimulus features, with two
exemplars each: their color (red/green), their movement direction
(left/right), their size (large/small), and their color saturation
(high/low). Any individual square was characterized by a con-
junction of the four features, while one exemplar of each feature
(e.g., green color) was most prevalent in the entire display. Multi-
attribute stimuli were shown for a fixed duration of three seconds,
after which participants were probed as to which of the two
exemplars of a single feature was most prevalent (via 2-AFC).
Probe uncertainty was parametrically manipulated using valid
pre-stimulus cues, indicating the feature set from which a probe
would be selected. The feature set remained constant for a
sequence of eight trials to reduce set switching demands. Optimal
performance required flexible sampling of the cued feature set,
while jointly inhibiting uncued features; participants had to thus
rapidly encode a varying number of targets (“target load”) to
prepare for an upcoming probe. Participants performed the task
well above chance level for different features and for different
levels of probe uncertainty (Supplementary Fig. 1a). As the
number of relevant targets increased, participants systematically

became slower (median RT; EEG: b= 0.14, 95% CI= [0.13, 0.15],
t(46)= 26.35, p= 2e−29; MRI: b= 0.11, 95% CI= [0.1, 0.12],
t(43)= 19.57, p= 5–23) and less accurate (EEG: b=−0.03, 95%
CI= [−0.04, −0.03], t(46)=−9.86, p= 6e−13; MRI: b=−0.02,
95% CI= [−0.03, −0.02], t(43)=−7.5, p= 2e−9) in their
response to single-feature probes (Supplementary Fig. 1b).

Probe uncertainty during sensation decreases the rate of sub-
sequent evidence integration. We leveraged the potential of
sequential sampling models to disentangle separable decision
processes in order to assess their modulation by probe uncer-
tainty. In particular, drift-diffusion models estimate (a) the non-
decision time (NDT), (b) the drift rate at which information
becomes available, and (c) the internal evidence threshold or
boundary separation (see Fig. 2a; for a review see ref. 26). We
fitted a hierarchical drift-diffusion model (HDDM) separately for
each testing session and assessed individual parameter con-
vergence with established EEG signatures. In particular, we
investigated the centro-parietal positivity (CPP) and lateralized
beta suppression as established neural signatures of evidence
integration from eidetic memory traces27. The best behavioral fit
was obtained by a model incorporating probe uncertainty-based
variations in drift rate, NDT, and boundary separation (Supple-
mentary Fig. 1c). Yet, there was no evidence for modulation of the
threshold of the CPP or the contralateral beta response (Sup-
plementary Fig. 1d). In line with prior work28, we therefore
selected an EEG-informed model with fixed thresholds across
target load levels. With this model, reliability of individual
parameters, as well as of their load-related changes, was high
across EEG and MRI sessions (see below and Supplementary
Fig. 1f, g). Parameter interrelations are reported in Supplemen-
tary Text 1.

Behavioral model estimates (Fig. 2b) and EEG signatures
(Fig. 2c and Supplementary Fig. 2a) jointly indicated that probe
uncertainty during stimulus presentation decreased the drift rate
during subsequent evidence accumulation. This indicates a
reduction of available evidence for single features when more
features had to be sampled. Individual drift rate estimates for a
single target were positively correlated with the slope of the CPP
(r= 0.52, 95% CI= [0.26, 0.71], p= 3.59e−4), while individual
drift rate reductions reflected the shallowing of CPP slopes
(r(137)= 0.34, 95% CI= [0.18, 0.48], p= 4.87e−5). Notably, the
magnitude of reductions in evidence accumulation with increas-
ing probe uncertainty was strongly anticorrelated with the
available evidence when the target attribute was known in
advance (i.e., the single-target condition; EEG session: r=−0.93,
95% CI= [−0.96, −0.88], p= 2e−21, MRI session: r=−0.88,
95% CI= [−0.93, −0.78], p= 2e−14). That is, participants with
more available evidence after attending to a single target showed
larger drift rate decreases under increased probe uncertainty.
Importantly, however, participants with higher drift rates for
single targets also retained higher drift rates at higher probe
uncertainty (i.e., high reliability for e.g., four targets: EEG: r=
0.48, 95% CI= [0.22, 0.67], p= 6e−4; MRI: r= 0.52, 95% CI=
[0.25, 0.71], p= 4e−4). Moreover, individuals with higher drift
rates across target loads exhibited lower average RTs (EEG: r=
−0.42, 95% CI= [−0.63, −0.16], p= 0.003; MRI: r=−0.38, 95%
CI= [−0.61, −0.08], p= 0.01) and higher task accuracy (EEG: r
= 0.86, 95% CI= [0.76, 0.92], p= 2e−14; MRI: r= 0.89, 95% CI
= [0.8, 0.94], p= 3e−15). Thus, in the present paradigm, more
pronounced drift rate decreases with increasing probe uncertainty
indexed a more successful modulation of feature-based attention
during encoding and better overall performance.

We performed multiple control analyses to further elucidate
decision properties. First, we did not observe a similar ramping of
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the CPP during stimulus presentation (Supplementary Fig. 2b),
suggesting that evidence accumulation was primarily initiated by
the probe. Similarly, a decoding analysis of button responses
indicated that information about choice execution was predomi-
nantly available following probe presentation, albeit with some
pre-probe information when responses could be prepared in
advance for single targets (Supplementary Text 2 and Supple-
mentary Fig. 2c, d). Second, drift rate reductions were not
primarily driven by differences between feature attributes
(Supplementary Fig. 2e–g). Third, concurrent variations in

response convergence (i.e., trials in which the correct choices
for all cued features converged on the same button response)
could not account for the observed effects (Supplementary Text 3
and Supplementary Fig. 1e). Fourth, individual drift rates for
single targets were unrelated to threshold estimates (EEG: r=
−0.05, 95% CI= [−0.33, 0.24], p= 0.74; MRI: r=−0.06; 95%
CI= [−0.35, 0.25], p= 0.72), thus suggesting a lack of differences
in response bias26. Finally, participants with larger drift rate
decreases exhibited more constrained NDT increases (EEG:
r(137)= 0.32, 95% CI= [0.16, 0.47], p= 1.04e−4; MRI: r(122)
= 0.37, 95% CI= [0.2, 0.51], p= 2.48e−5), indicating reduced
additional motor transformation demands (see Supplementary
Text 4) in high performers.

Cortical excitability increases under uncertainty guide sub-
sequent evidence integration. Decreases in the rate of evidence
integration indicate the detrimental consequences of probe
uncertainty to single-feature decisions, but not the mechanisms
by which sensory processing is altered. To investigate the latter,
we examined rhythmic and aperiodic cortical signatures during
stimulus processing. To jointly assess multivariate changes in
spectral power as a function of probe uncertainty, we performed a
partial-least-squares (PLS) analysis that produces low-dimen-
sional, multivariate relations between brain-based data (in the
present study, time–frequency–space matrices) and other vari-
ables of interest (see “Methods”). First, we assessed evoked
changes compared to baseline using a task PLS, which here
assesses optimal statistical relations between time-frequency
matrices and experimental conditions. We observed a single
latent variable (LV; permuted p < 0.001) that expressed jointly
increased power in the delta–theta and gamma bands and
decreased alpha power upon stimulus onset (Fig. 3a and Sup-
plementary Fig. 4a), in line with increased cognitive control29 and
heightened bottom-up visual processing8. We next performed a
task PLS to assess spectral power changes as a function of target
load. A single LV (permuted p < 0.001; Fig. 3b–d) indicated a
stronger expression of this control- and excitability-like pattern
with increasing probe uncertainty. Next, we assessed the link
between individual changes in multivariate loadings on this
“spectral power modulation component” (SPMC) and behavioral
modulations. We performed partial repeated measures correla-
tions (see “Methods”), a mixed modeling approach that controls
for the main effect of probe uncertainty in both variables of
interest and indicates interindividual associations independent of
the specific shape of condition modulation in individual partici-
pants. Crucially, participants with stronger spectral power mod-
ulation during sensation exhibited faster evidence integration in
the single-target condition (Fig. 3f; 95% CI= [0.27, 0.7]), as well
as stronger drift rate decreases under uncertainty (r(137)=−0.4,
95% CI= [−0.53, −0.25], p= 1.12e−6; Fig. 3g), while showing
constrained increases in NDT (r(137)=−0.26, 95% CI= [−0.41,
−0.1], p= 0.002). In sum, this suggests that high performers
flexibly increased visual throughput as more features became
relevant via top-down control of cortical excitability.

Here too, we performed multiple control analyses. First, the
same multivariate power-band relations noted in our task PLS
model (SPMC above) were also identified in a behavioral PLS
model intended to estimate optimal statistical relations between
power bands and behavior (Supplementary Text 5 and Supple-
mentary Fig. 4b). [The main difference between task and
behavioral PLS rests in the relation of multivariate neural values
to categorical design variables in the former, and continuous
individual “behavioral” variables in the latter30.] Second, while we
observed increases in pre-stimulus alpha power with increasing
probe uncertainty, these changes did not relate to behavioral
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single feature (e.g., color). A button press indicates the decision once one of
the bounds has been reached and motor preparation has concluded. A non-
decision time parameter captures visual encoding and motor preparation, drift
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estimates for drift rate and non-decision time (NDT; discussed in
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22511-7

4 NATURE COMMUNICATIONS |         (2021) 12:2430 | https://doi.org/10.1038/s41467-021-22511-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


changes or power changes during stimulus processing (Supple-
mentary Text 6 and Supplementary Fig. 4c). Third, the entrained
steady-state visual evoked potential (SSVEP) magnitude was not
modulated by target load (Supplementary Text 7 and Supple-
mentary Fig. 4d). Fourth, multivariate power changes corre-
sponded to narrow-band, rhythm-specific indices in the theta and
alpha band (Supplementary Text 8 and Supplementary Fig. 4e),
and thus did not exclusively result from changes in the aperiodic
background spectrum (see below).

Alpha phase modulates gamma power during sensation. Alpha
rhythms have been related to phasic control over bottom-up
input (presumedly indexed by gamma power8). To assess phase-
amplitude coupling (PAC) in the present data, we selected tem-
poral alpha episodes at the single-trial level (see “Methods”,
Fig. 4a) and assessed the coupling between alpha phase and
gamma power. We observed significant alpha–gamma PAC
(Fig. 4b, d, left), consistent with alpha-phase-dependent excit-
ability modulation. This was constrained to the occurrence of
defined alpha episodes (see “Methods”), as no significant alpha-
gamma PAC was observed prior to indicated alpha episodes (gray
shading in Fig. 4a; Fig. 4d, right). Phasic gamma power mod-
ulation was observed across target load levels (Fig. 4f), but alpha
duration decreased as a function of load (Fig. 4c). This suggests
that alpha rhythms consistently regulated gamma power, but that
alpha engagement decreased as more targets became relevant.

Sample entropy and scale-free dynamics indicate shifts towards
increased excitability. Next, we assessed whether reduced alpha
engagement was accompanied by increases in temporal irregu-
larity, a candidate signature for system excitability15,31. We pro-
bed time-resolved fluctuations in sample entropy (SampEn), an

information-theoretic estimate of signal irregularity32. As sample
entropy is jointly sensitive to broadband dynamics and narrow-
band rhythms, we removed the alpha frequency range using
band-stop-filters (8–15 Hz) to avoid contributions from alpha
rhythms (see ref. 15). A cluster-based permutation test indicated
SampEn increases under probe uncertainty over posterior-
occipital channels (Fig. 5a–c). Notably, the magnitude of indivi-
dual entropy modulation in this cluster scaled with increases in
the SPMC (r(137)= 0.22, 95% CI= [0.05, 0.37], p= 0.01). This
indicates that multivariate changes in spectral power, including
alpha desynchronization, were accompanied by broadband
changes in signal irregularity.

Aperiodic, scale-free spectral slopes are a major contributor to
broadband SampEn, due to their joint sensitivity to autocorre-
lative structure15, and a shallowing of aperiodic (1/f) slopes has
theoretically been associated with system excitability13. We
therefore assessed aperiodic slope changes during the stimulus
period (excluding onset transients). In line with our hypothesis,
participants’ PSD slopes shallowed under uncertainty (Fig. 5d–f),
suggesting that participants increased their excitatory tone in
posterior cortex. In line with the expectation that sample entropy
should be highly sensitive to scale-free dynamics, sample entropy
was strongly related to individual PSD slopes across conditions (r
= 0.78, 95% CI= [0.64, 0.87], p= 7e−11) and to linear changes
in PSD slope with increasing uncertainty (r(137)= 0.44, 95% CI
= [0.3, 0.57], p= 4.92e−8). In sum, heightened probe uncertainty
desynchronized low-frequency alpha rhythms and elevated the
irregularity of cortical dynamics, in line with enhanced tonic
excitability.

Increases in phasic pupil diameter relate to transient spectral
power changes. Phasic arousal changes modulate perception and
local cortical excitability (for reviews see refs. 3,16). To test
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whether arousal increased alongside uncertainty, we assessed
phasic changes in pupillometric responses as a proxy for arousal
during stimulus presentation. We quantified phasic pupil
responses via the first temporal derivative (i.e., rate of change), as
this measure has higher temporal precision and has been more
strongly associated with noradrenergic responses than the overall
pupil response24. Phasic pupil dilation systematically increased
with probe uncertainty (Fig. 6). This modulation occurred on top
of a general pupil constriction due to stimulus-evoked changes in
luminance (Fig. 6a, inset), while the linear modulation occurred—
by stimulus design—in the absence of systematic luminance dif-
ferences across load levels.

Next, we assessed the relation between individual modulations
in pupil diameter, cortical excitability, and behavior. The
magnitude of pupil increases tracked increases in the spectral
power modulation component (SPMC; r(137)= 0.22, 95% CI=
[0.06, 0.38], p= 0.01), but did not directly relate to entropy (r
(137)=−0.06, 95% CI= [−0.23, 0.1], p= 0.45) or aperiodic
slope changes (r(137)=−0.04, 95% CI= [−0.2, 0.13], p= 0.67).
Participants with larger increases in pupil dilation also exhibited
higher drift rates at baseline (r= 0.31, p= 0.033), greater
decreases in drift rate (r(137)=−0.17, 95% CI= [−0.33, 0],
p= 0.05) and more constrained NDT increases (r(137)=−0.21,
95% CI= [−0.36, −0.04], p= 0.01) with increasing probe
uncertainty. This suggests that arousal jointly related to spectral
power changes during stimulus presentation and subsequent
choices made at probe.

Thalamic BOLD modulation tracks excitability increases dur-
ing sensation. Finally, we probed whether the thalamus acts as a
subcortical nexus for sensory excitability adjustments under
probe uncertainty. To allow spatially resolved insights into tha-
lamic involvement, participants took part in a second, fMRI-
based testing session during which they performed the same task.
First, we investigated uncertainty-related changes in BOLD
magnitude during stimulus processing via a task PLS targeting

optimal statistical differentiation of target load levels. This ana-
lysis suggested two reliable latent variables (LV1: permuted p ~ 0;
LV2: permuted p= 0.007; Fig. 7). See Supplementary Table 1 for
peak coordinates/statistics and Supplementary Fig. 5a/b for
complete multivariate spatial patterns for the two LVs, with the
first LV explaining the dominant amount of variance (89.6%
crossblock covariance) compared to the second LV (8.7% cross-
block covariance).

The first latent variable (LV1) indicated load-related increases
dominantly in cortical areas encompassing the fronto-parietal
and the salience network, as well as thalamus. Primary positive
contributors to LV1 (i.e., representing increases in BOLD with
increasing probe uncertainty) were located in mid-cingulate
cortex (MCG), inferior parietal lobule (IPL), bilateral anterior
insula (aINS), inferior occipital gyrus (IOG), thalamus, and
bilateral inferior frontal gyrus (IFG). In contrast, relative
uncertainty-related decreases in BOLD magnitude were dom-
inantly observed in pallidum (potentially reflecting reduced
motor preparation), bilateral posterior insula (pINS), left SFG,
and left mid-cingulate cortex. Individual brain score increases
were associated with stronger drift rate decreases (r(122)=
−0.36, 95% CI [−0.5, −0.19], p= 5.11e−5), but not NDT,
SPMC, or entropy (all p > 0.05). See Supplementary Text 9 for
results from the second latent variable (LV2), which might reflect
decreased engagement at higher levels of target uncertainty.

Finally, we performed a behavioral PLS examining optimal
multivariate relations to various neuro-behavioral indices, to
probe whether regional BOLD modulation tracked a unified set of
individual differences in the modulation of cortical excitability,
arousal, and behavior. We observed a single significant LV
(permuted p= 0.001, 46.2% crossblock covariance) that dom-
inantly loaded on anterior and midline thalamic nuclei with
fronto-parietal projection zones (Fig. 7d), and extended broadly
across almost the entirety of thalamus. BOLD magnitude
increases were more pronounced in participants exhibiting higher
drift rates (i.e., more available evidence) (r= 0.75, 95%
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bootstrapped (bs)CI= [0.72, 0.86]) and stronger drift reductions
under probe uncertainty (r=−0.6, 95% bsCI= [−0.78, −0.54];
Fig. 7b), as well as lower baseline NDTs (r=−0.37, 95% bsCI=
[−0.58, −0.08]), confirming that increased thalamic responses
reflected behaviorally adaptive contextual adjustments. This
association was specific to the behavioral adjustments of interest,
as we noted no relations with NDT modulation (r= 0.05, 95%
bsCI= [−0.31, 0.3]) or boundary separation (r= 0.08, 95% bsCI
= [−0.24, 0.37]). Importantly, higher (dominantly thalamic)
BOLD modulation was further associated with greater increases
on the SPMC (r= 0.31, 95% bsCI= [0.16, 0.58]), in phasic pupil
dilation (r= 0.67, 95% bsCI= [0.51, 0.81]) and in entropy
assessed during the EEG session (r= 0.22, 95% bsCI= [0.08,
0.46]; Fig. 7b). 1/f shallowing was not stably related to BOLD
modulation (r=−0.24, 95% bsCI= [−0.38, 0.19]), potentially
due to noisier individual estimates. BOLD modulation was
unrelated to chronological age (r=−0.20, 95% CI= [−0.14,
0.45], p= 0.21), gender (male vs. female; r=−0.28, 95% CI=
[−0.54, 0.03], p= 0.08), subjective task difficulty (rated on 5-
point Likert scale; r=−0.02, 95% CI= [−0.32, 0.28], p= 0.89),
or framewise displacement of BOLD signals (an estimate of in-
scanner motion; r=−0.24, 95% CI= [−0.51, 0.07], p= 0.13).

Taken together, these results suggest a major role of the thalamus
in integrating phasic neuromodulation to regulate rhythmic and
aperiodic cortical excitability according to contextual demands.

Discussion
To efficiently process information, cortical networks must be
flexibly tuned to environmental demands. Invasive studies indi-
cate a crucial role of the thalamus in such adaptations (for a
review see ref. 20), but human evidence on thalamic involvement
in rapid cortical regime switches at the service of behavioral
flexibility has been missing. By combining a multi-modal
experimental design with a close look at individual differences,
we found that processing under contextual uncertainty was
associated with a triad characterized by thalamic BOLD mod-
ulation, EEG-based cortical excitability, and pupil-based indica-
tors of arousal. In light of this triad, we propose that thalamic
regulation of sensory excitability is crucial for adaptive sensory
filtering in information-rich environments.

By cueing relevant dimensions of otherwise physically identical
stimuli, we observed that increases in the number of attentional
targets reliably reduced participants’ available evidence (as evi-
denced by drift rate decreases) during subsequent perceptual
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decisions. We interpret these changes as a negative but necessary
and adaptive consequence of the need to encode multiple relevant
features for an eventual decision regarding a single target. Con-
currently, BOLD activity increased in the dorsal frontoparietal
network33 (composed of the inferior frontal junction, inferior
frontal gyrus, and posterior parietal cortex) and the midcingulo-
insular network33. These cortical networks are associated with
salience processing and are thought to establish the contextual
relevance of environmental stimuli and to communicate this
information to sensory cortex19. Accordingly, their BOLD activity
often increases alongside multifaceted demands34, further in line
with increased mediofrontal theta engagement29.

Besides such cortical responses at the group level, however, we
noted that individual increases in cortical excitability, drift rates,
and arousal were tracked primarily by the extent of thalamic
signal elevation, dominantly in areas with fronto-parietal pro-
jections. While past work emphasized the thalamic relay of

peripheral information to cortex, recent theories highlight its
dynamic involvement in cortical and cognitive function (for
reviews see refs. 20,35,36), with empirical support in humans37–40,
monkeys41, and mice23,42,43. In particular, anterior and midline
thalamic nuclei (such as the mediodorsal nucleus (MD), in which
neuro-behavioral relations were maximal in our results) are
implicated in establishing43, sustaining44, and switching43,45–47

prefrontal rule representations depending on the active task
context43. An intriguing possibility is that target uncertainty
increases MD engagement to enable a more dynamic target
selection among high-dimensional prefrontal feature
representations43,48,49. Such proposal aligns with highest MD
engagement during the integration of multiple cognitive
demands35,50, and MD lesions specifically impairing performance
for larger stimulus sets51 and more complex tasks52. As such, MD
may play a crucial role in enabling flexible behaviors, particularly
under uncertainty35,50,53,54.
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Such uncertainty modulation in anterior-medial thalamic
regions complements the previously reported representation of
perceptual precision or confidence in Pulvinar neurons55,56. Such
“perceptual priors” may coordinate feature-selective information
within and across visual cortex20,41,55 once perceptual targets
have been selected. Notably, the MAAT manipulates probe
uncertainty, but not the sensory information (e.g., motion
coherence) per se. It is thus an intriguing question whether a
complementary manipulation of visual characteristics could dis-
sociate MD and Pulvinar engagement in future work.

In sensory cortex, higher-order thalamic circuits can shape
sensory excitability23 via different thalamocortical activity
modes57. In a “burst mode”, thalamic nuclei elicit synchronous
activity that can boost stimulus detection via non-linear gain in
cortical responses, whereas spike activity during a “tonic mode”
more faithfully tracks incoming signals57. Shifts from sparse
bursts towards tonic activity may underlie attention-related
increases in thalamic BOLD magnitude observed here and in
previous task fMRI studies (e.g., ref. 38), although further work
needs to better elucidate the relation between thalamic trans-
mission modes and BOLD responses (but see ref. 22).

Associated with thalamic bursting, cortical alpha rhythms may
control sensory gain via periodic fluctuations in excitability5,7 that
can signify rapid temporal imbalances between excitation and
inhibition58. Supporting this notion, we observed a coupling
between alpha phase and high-frequency power during stimulus
processing, with participants engaging alpha rhythms most pre-
valently when prior cues afforded them a focus on single stimulus
features (i.e., high available sensory evidence). Alpha rhythms
have been consistently linked to the Pulvinar nucleus41, which
may leverage rhythms to establish and disband functional con-
nectivity between visual and parietal cortex55. While the locali-
zation of effects within the thalamus remains challenging in
BOLD signals39, our results support a perspective in which alpha
rhythms—shaped via thalamocortical circuits—dynamically
extract relevant “bottom-up” sensory information5 when contexts
afford joint distractor suppression and target enhancement (such
as the single-target condition in the present paradigm).

Complementing such selective gain control, overall increases in
excitatory tone may serve multi-feature attention when only
limited attentional guidance is available. Our results provide
initial evidence that probe uncertainty transiently (a) desyn-
chronizes alpha rhythms, (b) increases gamma power, and (c)
elevates sample entropy while shallowing spectral slopes, a pat-
tern that suggests increases in excitatory contributions to E/I
mixture currents13 and asynchronous neural firing12. Con-
ceptually, elevated excitability during high probe uncertainty
facilitates an efficient and rapid switching between parallel feature
activations. Convergent with this idea, joint activation of neural
populations coding multiple relevant features has been observed
during multi-feature attention11. Furthermore, computational
modeling indicates that E/I modulations in hierarchical networks
optimally adjust multi-attribute choices10. Similar to our obser-
vation of enhanced excitability during probe uncertainty, Pettine
et al.10 found increases in excitatory tone optimal for a linear
weighting of multiple features, whereas inhibitory engagement
increased the gain for specific features during more difficult
perceptual decisions. As discussed above, such inhibitory tuning
may regulate selective target gains via alpha rhythms, in line with
the presumed importance of inhibitory interneurons in alpha
rhythmogenesis6.

Finally, probe uncertainty increased phasic pupil diameter, with
strong links to parallel adjustments in behavior, EEG-based
excitability, and thalamic BOLD modulation. Fluctuations in pupil
diameter provide a non-invasive proxy of noradrenergic drive24.
As such, our results support neuromodulation as a potent

regulator of excitability, at least in part via thalamic circuits17,21.
Functionally, pupil diameter rises during states of heightened
uncertainty (such as change points in dynamic environments59,60)
and is accompanied by cortical desynchronization31,59. Our results
extend those observations and suggest that neuromodulatory
drive accompanies excitability increases, potentially to serve
a more faithful processing of complex environments17. Indeed,
multiple neuromodulators, prominently noradrenaline and acet-
ylcholine, regulate thalamocortical excitability2,3,17,61 and pupil
responses24, but may differentially serve perceptual sensitivity vs.
specificity demands. Specifically, noradrenergic drive may increase
sensitivity to external stimuli17 by increasing E/I ratios62–64,
whereas cholinergic innervation might facilitate response
selectivity65 (but see ref. 61). However, the functional separability
of these modulators necessitates future work.

In summary, we report initial evidence that thalamocortical
excitability adjustments guide human perception and decisions
under uncertainty. Our results point to neuromodulatory changes
regulated by the thalamus that trigger behaviorally relevant
switches in cortical dynamics, from alpha-rhythmic gain control
to increased tonic excitability once contexts require a more
faithful processing of information-rich environments. Given that
difficulties in dealing with uncertainty, neuro-sensory hyper-
excitability, and deficient E/I control are all hallmarks of several
clinical disorders (e.g., ref. 66), we surmise that further research
on individual differences in the modulation of contextual excit-
ability may advance our understanding of cognitive flexibility in
both healthy and disordered populations.

Methods
Sample. Forty-seven healthy young adults (18–35 years, mean age= 25.8 years,
SD= 4.6, 25 women) performed a dynamic visual attention task during 64-channel
active scalp EEG acquisition, 42 of whom returned for a subsequent 3T fMRI
session. Due to participant and scanner availability, the average span between EEG
and MR testing sessions was 9.8 days (SD= 9.5 days). Participants were recruited
from the participant database of the Max Planck Institute for Human Develop-
ment, Berlin, Germany (MPIB). Participants were right-handed, as assessed with a
modified version of the Edinburgh Handedness Inventory67, and had normal or
corrected-to-normal vision. Participants reported themselves to be in good health
with no known history of neurological or psychiatric incidences, and were paid for
their participation (10 € per hour). All participants gave written informed consent
according to the institutional guidelines of the Deutsche Gesellschaft für Psycho-
logie (DGPS) ethics board, which approved the study.

Procedure: EEG session. Participants were seated at a distance of 60 cm in front of
a monitor in an acoustically and electrically shielded chamber with their heads
placed on a chin rest. Following electrode placement, participants were instructed
to rest with their eyes open and closed, each for 3 min. Afterwards, participants
performed a standard Stroop task, followed by the visual attention task (“MAAT”,
see below) instruction and practice, the performance of the task and a second
Stroop assessment (Stroop results are not reported here). Stimuli were presented
on a 60 Hz 1920 × 1080p LCD screen (AG Neovo X24) using PsychToolbox
3.0.1168–70. The session lasted ~3 h. EEG was continuously recorded from 60 active
(Ag/AgCl) electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching,
Germany). Scalp electrodes were arranged within an elastic cap (EASYCAP GmbH,
Herrsching, Germany) according to the 10% system71, with the ground placed at
AFz. To monitor eye movements, two additional electrodes were placed on the
outer canthi (horizontal EOG) and one electrode below the left eye (vertical EOG).
During recording, all electrodes were referenced to the right mastoid electrode,
while the left mastoid electrode was recorded as an additional channel. Online,
signals were digitized at a sampling rate of 1 kHz. In addition to EEG, we simul-
taneously tracked eye movements and assessed pupil diameter using EyeLink
1000+ hardware (SR Research, v.4.594) with a sampling rate of 1 kHz.

Procedure: MRI session. Forty-two participants returned for a second testing
session that included structural and functional MRI assessments. First, participants
took part in a short refresh of the visual attention task (“MAAT”, see below)
instructions and practiced the task outside the scanner. Then, participants were
located in the TimTrio 3T scanner and were instructed in the button mapping. We
collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI, with
a 15 min out-of-scanner break following the task acquisition. The session lasted
~3 h. Whole-brain task fMRI data (4 runs á ~11.5 min, 1066 volumes per run) were
collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany) using a
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multi-band EPI sequence (factor 4; TR= 645 ms; TE= 30 ms; flip angle 60°; FoV
= 222 mm; voxel size 3 × 3 × 3 mm; 40 transverse slices. The first 12 volumes (12 ×
645 ms= 7.7 s) were removed to ensure a steady state of tissue magnetization (total
remaining volumes= 1054 per run). A T1-weighted structural scan was also
acquired (MPRAGE: TR= 2500 ms; TE= 4.77 ms; flip angle 7°; FoV= 256 mm;
voxel size 1 × 1 × 1 mm; 192 sagittal slices). A T2-weighted structural scan was also
acquired (GRAPPA: TR= 3200 ms; TE= 347 ms; FoV= 256 mm; voxel size 1 ×
1 × 1mm; 176 sagittal slices).

The Multi-Attribute Attention Task. We designed a task to parametrically
control top-down attention to multiple feature dimensions, in the absence of
systematic variation in bottom-up visual stimulation (see Fig. 1). Participants were
shown a dynamic square display that jointly consisted of four attributes: color (red/
green), movement direction (left, right), size (small, large), and saturation (low,
high). The task incorporates features from random dot motion tasks which have
been extensively studied in both animal models19,25,72 and humans73,74. Following
the presentation of these displays, a probe queried the prevalence of one of the four
attributes in the display (e.g., whether the display comprised a greater proportion of
either smaller or larger squares). Prior to stimulus onset, valid cue presentation
informed participants about the active feature set, out of which one feature would
be chosen as the probe. We parametrically manipulated uncertainty regarding the
upcoming probe by systematically varying both the number and type of relevant
features in the display.

The difficulty of each feature was determined by (a) the fundamental feature
difference between the two alternatives and (b) the sensory evidence for each
alternative in the display. For (a) the following values were used: high (RGB: 128,
255, 0) and low saturation green (RGB: 192, 255, 128) and high (RGB: 255, 0, 43)
and low saturated red (RGB: 255, 128, 149) for color and saturation, 5 and 8 pixels
for size differences and a coherence of 0.2 for directions. For (b) the proportion of
winning to losing option (i.e., sensory evidence) was chosen as follows: color: 60/
40; direction: 80/20; size: 65/35; luminance: 60/40. Parameter difficulty was
established in a pilot population, with the aim to produce above-chance accuracy
for individual features.

The experiment consisted of four runs of ~10 min, each consisting of eight
blocks of eight trials (i.e., a total of 32 trial blocks; 256 trials). The size and
constellation of the cue set was held constant within eight-trial blocks to reduce set
switching and working memory demands. Each trial was structured as follows: cue
onset during which the relevant targets were centrally presented (1 s), fixation
phase (2 s), dynamic stimulus phase (3 s), probe phase (incl. response; 2 s); ITI (un-
jittered; 1.5 s). At the onset of each block, the valid cue (attentional target) set was
presented for 5 s. At the offset of each block, participants received feedback for 3 s.
The four features with two options each spanned a constellation of 16 distinct
stimulus combinations, of which presentation frequency was matched within
participants. The size and type of cue set was pseudo-randomized, such that every
size and constellation of the cue set was presented across blocks. Within each run
of four blocks, every set size was presented once, but never directly following a
block of the same set size. In every block, each feature in the active set acted as a
probe in at least one trial. Moreover, any attribute equally often served as a probe
across all blocks. Winning options for each feature were balanced across trials such
that correct responses were equally distributed to the left and rigth button across
the experiment. To retain high motivation during the task and encourage fast and
accurate responses, we instructed participants that one response would randomly
be drawn at the end of each block; if this response was correct and faster than the
mean RT during the preceding block, they would earn a reward of 20 cents.
However, we pseudo-randomized feedback such that all participants received a
fixed payout of 10 € per session. This extra money was paid in addition to the
participation fee at the end of the second session, at which point participants were
debriefed.

Behavioral estimates of probe-related decision processes. Sequential sampling
models, such as the drift-diffusion model (DDM26), have been used to characterize
evolving perceptual decisions in 2-alternative forced choice (2AFC) random dot
motion tasks73, where the evolving decision relates to overt stimulus dynamics. In
contrast to such applications, evidence integration here is tied to eidetic memory
traces following the probe onset, similar to applications during memory retrieval75

or probabilistic decision making76. Here, we estimated individual evidence inte-
gration parameters within the HDDM 0.6.0 toolbox77 to profit from the large
number of participants that can establish group priors for the relatively sparse
within-subject data. Independent models were fit to data from the EEG and the
fMRI session to allow reliability assessments of individual estimates. Premature
responses faster than 250 ms were excluded prior to modeling, and the probability
of outliers was set to 5%. In total, 7000 Markov-Chain Monte Carlo samples were
sampled to estimate parameters, with the first 5000 samples being discarded as
burn-in to achieve convergence. We judged convergence for each model by visually
assessing both Markov chain convergence and posterior predictive fits. Individual
estimates were averaged across the remaining 2000 samples for follow-up analyses.

We fitted data to correct and incorrect RTs (termed “accuracy coding” in
Wiecki et al.77). To explain differences in decision components, we compared four
separate models. In the “full model”, we allowed the following parameters to vary
between conditions: (i) the mean drift rate across trials, (ii) the threshold

separation between the two decision bounds, (iii) the NDT, which represents the
summed duration of sensory encoding and response execution. In the remaining
models, we reduced model complexity, by only varying (a) drift, (b) drift+
threshold, or (c) drift+NDT, with a null model fixing all three parameters. For
model comparison, we first used the Deviance Information Criterion (DIC) to
select the model which provided the best fit to our data. The DIC compares models
on the basis of the maximal log-likelihood value, while penalizing model
complexity. The full model provided the best fit to the empirical data based on the
DIC index (Supplementary Fig. 1c) in both the EEG and the fMRI session.
However, although this model did indicate an increase in decision thresholds (i.e.,
boundary separation), there was no equivalent effect noted in the
electrophysiological data (Supplementary Fig. 1d). We therefore fixed the threshold
parameter across conditions, in line with previous work constraining DDM model
parameters on the basis of electrophysiological evidence28.

EEG preprocessing. Preprocessing and analysis of EEG data were conducted with
the FieldTrip toolbox (v.20170904)78 and using custom-written MATLAB (The
MathWorks Inc., Natick, MA, USA) code. Offline, EEG data were filtered using a
fourth-order Butterworth filter with a pass-band of 0.5–100 Hz. Subsequently, data
were downsampled to 500 Hz and all channels were re-referenced to mathemati-
cally averaged mastoids. Blink, movement and heart-beat artifacts were identified
using independent component analysis (ICA79) and removed from the signal.
Artifact-contaminated channels (determined across epochs) were automatically
detected using (a) the FASTER algorithm80 and by (b) detecting outliers exceeding
three standard deviations of the kurtosis of the distribution of power values in each
epoch within low (0.2–2 Hz) or high (30–100 Hz) frequency bands, respectively.
Rejected channels were interpolated using spherical splines81. Subsequently, noisy
epochs were likewise excluded based on a custom implementation of FASTER and
on recursive outlier detection. Finally, recordings were segmented to participant
cues to open their eyes and were epoched into non-overlapping 3 s pseudo-trials.
To enhance spatial specificity, scalp current density estimates were derived via
fourth-order spherical splines81 using a standard 1005 channel layout (con-
ductivity: 0.33 s/m; regularization: 1−05; 14th degree polynomials).

Electrophysiological estimates of probe-related decision processes
Centro-parietal positivity. The CPP is an electrophysiological signature of internal
evidence-to-bound accumulation28,73,82. We probed the task modulation of this
established signature and assessed its convergence with behavioral parameter
estimates. To derive the CPP, preprocessed EEG data were low-pass filtered at 8 Hz
with a sixth-order Butterworth filter to exclude low-frequency oscillations, epoched
relative to response, and averaged across trials within each condition. In accor-
dance with the literature, this revealed a dipolar scalp potential that exhibited a
positive peak over parietal channel POz (see Fig. 2). We temporally normalized
individual CPP estimates to a condition-specific baseline during the final 250 ms
preceding probe onset. As a proxy of evidence drift rate, CPP slopes were estimates
via linear regression from −250 to −100 ms surrounding response execution, while
the average CPP amplitude from −50 to 50 ms served as an indicator of decision
thresholds (i.e., boundary separation; e.g., ref. 28).

To investigate whether a similar “ramping” potential was observed during
stimulus presentation, we aligned data to stimulus onset and temporally
normalized signals to the condition-specific signal during the final 250 ms prior to
stimulus onset. During stimulus presentation, no “ramp”-like signal or load
modulation was observed at the peak CPP channel. This suggests that immediate
choice requirements were necessary for the emergence of the CPP, although prior
work has shown the CPP to be independent of explicit motor requirements82.

Finally, we assessed whether differences between probed stimulus attributes
could account for load-related CPP changes (Supplementary Fig. 2e–g). For this
analysis, we selected trials separately by condition and probed attribute. Note that
for different probes (but not cues), trials were uniquely associated with each feature
and trial counts were approximately matched across conditions. We explored
differences between different conditions via paired t-tests. To assess load effects on
CPP slopes and thresholds as a function of probed attribute, we calculated first-
level load effects by means of a linear model and assessed their difference from zero
via paired t-tests.

Contralateral mu–beta. Decreases in contralateral mu-beta power provide a com-
plementary, effector-specific signature of evidence integration28,83. We estimated
mu-beta power using seven-cycle wavelets for the 8–25 Hz range with a step size of
50 ms. Spectral power was time-locked to probe presentation and response
execution. We re-mapped channels to describe data recorded contra- and ipsi-
lateral to the executed motor response in each trial, and averaged data from those
channels to derive grand average mu-beta time courses. Individual average mu-beta
time series were baseline-corrected using the −400 to −200 ms time window prior
to probe onset, separately for each condition. For contralateral motor responses,
remapped sites C3/5 and CP3/CP5 were selected based on the grand average
topography for lateralized response executions (see inset in Supplementary Fig. 2a).
As a proxy of evidence drift rate, mu-beta slopes were estimates via linear
regression from −250 to −50 ms prior to response execution, while the average
power −50 to 50 ms served as an indicator of decision thresholds (e.g., ref. 28).
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Electrophysiological indices of top-down modulation during sensation
Low-frequency alpha and theta power. We estimated low-frequency power via a
seven-cycle wavelet transform, applied at linearly spaced center frequencies in 1 Hz
steps from 2 to 15 Hz. The step size of estimates was 50 ms, ranging from −1.5 s
prior to cue onset to 3.5 s following stimulus offset. Estimates were log10-
transformed at the single trial level84, with no explicit baseline.

High-frequency gamma power. Gamma responses were estimated using multi-
tapers (five tapers; discrete prolate spheroidal sequences) with a step size of 200 ms,
a window length of 400 ms, and a frequency resolution of 2.5 Hz. The frequency
range covered frequencies between 45 and 90 Hz, with spectral smoothing of 8 Hz.
Estimates were log10-transformed at the single trial level. We normalized indivi-
dual gamma-band responses via single-trial z-normalization to decrease sensitivity
to non-neural sources85. In particular, for each frequency, we subtracted single-trial
power −700 to −100 ms prior to stimulus onset and divided by the standard
deviation of power values across trials during the same period. This produces
normalized values that weight stimulus-induced gamma power relative to (pre-
sumed non-neural) gamma power variation in the absence of visual stimulation.
Finally, to account for baseline shifts during the pre-stimulus period, we subtracted
condition-wise averages during the same baseline period.

Multivariate assessment of spectral power changes with stimulus onset and uncer-
tainty. To determine changes in spectral power upon stimulus onset, and during
stimulus presentation with load, we entered individual power values into multi-
variate partial least-squares (PLS) analyses (see section “Multivariate partial least-
squares analyses”) using the MEG-PLS toolbox v2.02b86. We concatenated low-
(2–15 Hz) and high-frequency (45–90 Hz) power matrices to assess joint changes
in the PLS models. To examine a multivariate contrast of spectral changes upon
stimulus onset (averaged across conditions) with spectral power in the pre-stimulus
baseline period, we performed a task PLS on data ranging from 500ms pre-stim to
500 ms post-stim. Temporal averages from −700 to −100 ms pre-stimulus onset
were subtracted as a baseline. To assess power changes as a function of probe
uncertainty, we segmented the data from 500 ms post stim onset to stimulus offset
(to exclude transient evoked onset responses) and calculated a task PLS concerning
the relation between experimental uncertainty conditions and
time–space–frequency power values. As a control, we performed a behavioral PLS
analysis to assess the relevance of individual frequency contributions to the
behavioral relation. For this analysis, we computed linear slopes relating power
to target load for each time–frequency point at the first (within-subject) level,
which were subsequently entered into the second-level PLS analysis. On the
behavioral side, we assessed both linear changes in pupil diameter, as well as drift
rates in the single-target condition and linear decreases in drift rate under
uncertainty. Finally, spontaneous fluctuations in pre-stimulus power have been
linked to fluctuations in cortical excitability87,88. We thus probed the role of
upcoming processing requirements on pre-stimulus oscillations, as well as the
potential relation to behavioral outcomes using task and behavioral PLS analyses.
The analysis was performed as described above but was restricted to time points
occurring during the final second prior to stimulus onset.

Steady-state visual-evoked potential. The SSVEP characterizes the phase-locked,
entrained visual activity (here 30 Hz) during dynamic stimulus updates (e.g.,
ref. 89). These features differentiate it from induced broadband activity or muscle
artifacts in similar frequency bands. We used these properties to normalize indi-
vidual single-trial SSVEP responses prior to averaging: (a) we calculated an FFT for
overlapping 1 s segments with a step size of 100 ms (Hanning-based multitaper)
and averaged them within each load condition; (b) we spectrally normalized 30 Hz
estimates by subtracting the average of estimates at 28 and 32 Hz, effectively
removing broadband effects (i.e., aperiodic slopes), and; (c) we subtracted a tem-
poral baseline −700 to −100 ms prior to stimulus onset. Linear load effects on
SSVEPs were assessed by univariate cluster-based permutation tests on channel ×
time data (see “Univariate cluster-based permutation analyses”).

Time-resolved sample entropy. Sample entropy32 quantifies the irregularity of a time
series of length N by assessing the conditional probability that two sequences of m
consecutive data points will remain similar when another sample (m+ 1) is
included in the sequence (for a visual example see Fig. 1A in ref. 15). Sample
entropy is defined as the inverse natural logarithm of this conditional similarity:

SampEn m; r;Nð Þ ¼ �log pmþ1 rð Þ
pm rð Þ

� �
: The similarity criterion (r) defines the tolerance

within which two points are considered similar and is defined relative to the
standard deviation (~variance) of the signal (here set to r= 0.5). We set the
sequence length m to 2, in line with previous applications15. An adapted version of
sample entropy calculations implemented in the mMSE toolbox (available from
https://github.com/LNDG/mMSE) was used15,90,91, wherein entropy is estimated
across discontinuous data segments to provide time-resolved estimates. The esti-
mation of scale-wise entropy across trials allows for an estimation of coarse scale
entropy also for short time-bins (i.e., without requiring long, continuous signals),
while quickly converging with entropy estimates from continuous recordings90. To
remove the influence of posterior-occipital low-frequency rhythms on entropy
estimates, we notch-filtered the 8–15 Hz alpha band using sixth-order Butterworth

filter prior to the entropy calculation15. Time-resolved entropy estimates were
calculated for 500 ms windows from −1 s pre-stimulus to 1.25 s post-probe with a
step size of 150 ms. As entropy values are implicitly normalized by the variance in
each time bin via the similarity criterion, no temporal baselining was required.
Linear load effects on entropy were assessed by univariate cluster-based permu-
tation tests on channel × time data (see “Univariate cluster-based permutation
analyses”).

Aperiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is closely related
to the sample entropy of broadband signals15 and has been suggested as a proxy for
“cortical excitability” and excitation–inhibition balance13. Spectral estimates were
computed by means of a fast Fourier transform (FFT) over the final 2.5 s of the
presentation period (to exclude onset transients) for 41 logarithmically spaced
frequencies between 2 and 64 Hz (Hanning-tapered segments zero-padded to 10 s)
and subsequently averaged. Spectral power was log10-transformed to render power
values more normally distributed across participants. Power spectral density (PSD)
slopes were derived by linearly regressing log10-transformed power values on
log10-transformed frequencies. The spectral range from 7 to 13 Hz was excluded
from the background fit to exclude a bias by the narrowband alpha peak15 and thus
to increase the specificity to aperiodic variance. Linear load effects on 1/f slopes
were assessed by univariate cluster-based permutation tests on channel data (see
“Univariate cluster-based permutation analyses”).

Rhythm-specific estimates. Spectral power estimates conflate rhythmic events with
aperiodicity in time, space, and magnitude92. Given that we observed changes in
aperiodic slopes, we verified that observed narrowband effects in the theta and
alpha band describe narrowband changes in rhythmicity. For this purpose, we
identified single-trial spectral events using the extended BOSC (eBOSC)
method92–94. In short, this method identifies stereotypic “rhythmic” events at the
single-trial level, with the assumption that such events have significantly higher
power than the 1/f background and occur for a minimum number of cycles at a
particular frequency. This procedure dissociates narrowband spectral peaks from
the aperiodic background spectrum. Here, we used a three-cycle threshold during
detection, while defining the power threshold as the 95th percentile above the
individual background power. A five-cycle wavelet was used to provide the
time–frequency transformations for 49 logarithmically spaced center frequencies
between 1 and 64 Hz. Rhythmic episodes were detected as described in ref. 92. Prior
to fitting 1/f slopes, the most dominant individual rhythmic alpha peak between 8
and 15 Hz was removed, as well as the 28–32 Hz range, to exclude the SSVEP.
Detection of episodes was restricted to the time of stimulus presentation, excluding
the first 500 ms to reduce residual pre-stimulus activity and onset transients.
Within each participant and channel, the duration and SNR of individual episodes
with a mean frequency between 4 and 8 Hz (theta) and 8 and 15 Hz (alpha) were
averaged across trials. Effects of target number were assessed within the averaged
spatial clusters indicated in Fig. 3 by means of paired t-tests.

Alpha–gamma PAC. We assessed alpha-phase-to-gamma-amplitude coupling to
assess the extent of phasic modulation of gamma power within the alpha band. As
phase information is only interpretable during the presence of a narrowband
rhythm95, we focused our main analysis on 250 ms time segments following the
estimated onset of a rhythm in the 8–15 Hz alpha range (see section “Rhythm-
specific estimates”; Fig. 4a). This time window ensured that segments fulfilled the
three-cycle criterion imposed during eBOSC rhythm detection to ensure that a
rhythm was present. We selected three occipital channels with maximal gamma
power (O1, O2, Oz; shown in Fig. 4a) and pooled detected alpha episodes across
these channels. We pooled data across load conditions, as we observed no con-
sistent PAC within individual load conditions, perhaps due to low episode counts.
To derive the alpha carrier phase, we band-pass filtered signals in the 8–15 Hz
band, and estimated the analytic phase time series via Hilbert transform. For the
amplitude of modulated frequencies, we equally applied band-pass filters from 40
to 150 Hz (step size: 2 Hz), with adaptive bandwidths (±20% of center frequency).
Filtering was implemented using MATLAB’s acausal filtfilt() routine using linear
finite impulse response filters, with an adaptive filter order set as three times the
ratio of the sampling frequency to the low-frequency cutoff96. For each applied
bandpass filter, we removed 250 ms at each edge to avoid filter artifacts. For each
frequency, narrowband signals were z-scored to normalize amplitudes across fre-
quencies, and absolute values of the Hilbert-derived complex signal were squared
to produce instantaneous power time series. We estimated the MI between the 8
and 15 Hz phase and high-frequency power via normalized entropy96 using 16
phase bins. Power estimates were normalized by dividing the bin-specific power by
the sum of power across bins. To make MI estimates robust against random
coupling, we estimated MI for 1000 surrogates, which shuffled the trial association
of phase and amplitude information. We subtracted the mean surrogate MI value
from the original MI index for a final, surrogate-normalized MI estimate. The
resulting MI estimates across frequencies were then subjected to a cluster-based
permutation test to assess significant clusters from zero using paired t-tests. For
Fig. 4b, we followed the procedure by Canolty et al.97. Alpha troughs were iden-
tified as local minima of phases <[−pi+ 0.01]. For visualization, data were aver-
aged across center frequencies from 80 to 150 Hz, as significant coupling
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overlapped with this range. We performed identical analyses for the 250 ms periods
prior to rhythm onset (gray shading in Fig. 4a) as a control condition.

Analyses of pupil diameter. Pupil diameter was recorded during the EEG session
using EyeLink 1000 at a sampling rate of 1000 Hz and was analyzed using FieldTrip
and custom-written MATLAB scripts. Blinks were automatically indicated by the
EyeLink software (version 4.40). To increase the sensitivity to periods of partially
occluded pupils or eye movements, the first derivative of eye-tracker-based vertical
eye movements was calculated, z-standardized, and outliers ≥3 STD were removed.
We additionally removed data within 150 ms preceding or following indicated
outliers. Finally, missing data were linearly interpolated, and data were epoched to
3.5 s prior to stimulus onset to 1 s following stimulus offset. We quantified phasic
arousal responses via the first temporal derivative (i.e. rate of change) of pupil
diameter traces as this measure (i) has higher temporal precision and (ii) has been
more strongly associated with noradrenergic responses than the overall response24.
We downsampled pupil time series to 200 Hz. For visualization, but not statistics,
we smoothed pupil traces using a moving average median of 200 ms. We statisti-
cally assessed a linear load effect using a cluster-based permutation test on the 1D
pupil traces (see “Univariate cluster-based permutation analyses”). For post hoc
assessments, we extracted the median pupil derivative during the first 1.5 s fol-
lowing stimulus onset.

fMRI-based analyses
Preprocessing of functional MRI data. fMRI data were preprocessed with FSL 5
(RRID:SCR_002823)98,99. Pre-processing included motion correction using
McFLIRT, smoothing (7 mm), and high-pass filtering (0.01 Hz) using an eighth-
order zero-phase Butterworth filter applied using MATLAB’s filtfilt function. We
registered individual functional runs to the individual, ANTs brain-extracted T2w
images (6 DOF), to T1w images (6 DOF) and finally to 3 mm standard space
(ICBM 2009c MNI152 nonlinear symmetric)100 using nonlinear transformations in
ANTs 2.1.0 (ref. 101) (for one participant, no T2w image was acquired and 6 DOF
transformation of BOLD data was preformed directly to the T1w structural scan).
We then masked the functional data with the ICBM 2009c GM tissue prior
(thresholded at a probability of 0.25), and detrended the functional images (up to a
cubic trend) using SPM12’s spm_detrend.

We also used a series of extended preprocessing steps to further reduce
potential non-neural artifacts102,103. Specifically, we examined data within-subject,
within-run via spatial independent component analysis (ICA) as implemented in
FSL-MELODIC104. Due to the high multiband data dimensionality in the absence
of low-pass filtering, we constrained the solution to 30 components per participant.
Noise components were identified according to several key criteria: (a) spiking
(components dominated by abrupt time series spikes); (b) motion (prominent edge
or “ringing” effects, sometimes [but not always] accompanied by large time series
spikes); (c) susceptibility and flow artifacts (prominent air-tissue boundary or sinus
activation; typically represents cardio/respiratory effects); (d) white matter (WM)
and ventricle activation105; (e) low-frequency signal drift106; (f) high power in
high-frequency ranges unlikely to represent neural activity (≥75% of total spectral
power present above 0.10 Hz); and (g) Spatial distribution (“spotty” or “speckled”
spatial pattern that appears scattered randomly across ≥25% of the brain, with few
if any clusters with ≥80 contiguous voxels). Examples of these various components
we typically deem to be noise can be found in ref. 107. By default, we utilized a
conservative set of rejection criteria; if manual classification decisions were
challenging due to mixing of “signal” and “noise” in a single component, we
generally elected to keep such components. Three independent raters of noise
components were utilized; >90% inter-rater reliability was required on separate
data before denoising decisions were made on the current data. Components
identified as artifacts were then regressed from corresponding fMRI runs using the
regfilt command in FSL.

To reduce the influence of motion and physiological fluctuations, we regressed
FSL’s 6 DOF motion parameters from the data, in addition to average signal within
white matter and CSF masks. Masks were created using 95% tissue probability
thresholds to create conservative masks. Data and regressors were demeaned and
linearly detrended prior to multiple linear regression for each run. To further
reduce the impact of potential motion outliers, we censored significant DVARS
outliers during the regression as described by Power et al.108. In particular, we
calculated the “practical significance” of DVARS estimates and applied a threshold
of 5 (ref. 109). The regression-based residuals were subsequently spectrally
interpolated during DVARS outliers as described in refs. 108,110. BOLD analyses
were restricted to participants with both EEG and MRI data available (N= 42).

First-level analysis: univariate beta weights for load conditions. We conducted a
first-level analysis using SPM12 to identify beta weights for each load condition
separately. Design variables included stimulus presentation by load (4 volumes;
parametrically modulated by sequence position), onset cue (no mod.), and probe (2
volumes, parametric modulation by RT). Design variables were convolved with a
canonical HRF, including its temporal derivative as a nuisance term. Nuisance
regressors included 24 motion parameters111 as well as continuous DVARS esti-
mates. Autoregressive modeling was implemented via FAST. For each load con-
dition, output beta images were averaged across runs.

Second-level analysis: multivariate modulation of BOLD responses. We investigated
the multivariate modulation of the BOLD response at the second level using PLS
analyses (see section “Multivariate partial least-squares analyses”). Specifically, we
probed the relationship between voxel-wise first-level beta weights and probe
uncertainty (i.e., task load level) within a task PLS. Next, we assessed the rela-
tionship between task-related BOLD signal changes and interindividual differences
in the joint modulation of decision processes, cortical excitability, and pupil
modulation by means of a behavioral PLS. For this, we first calculated linear slope
coefficients for voxel-wise beta estimates. Then, we included behavioral variables,
including HDDM parameter estimates in the single-target condition, as well as
linear changes with load, individual linear condition modulation of the following
variables: multivariate spectral power, pupil dilation, 1/f modulation, and entropy
residuals. Prior to these covariates in the model, we visually assessed whether the
distribution of linear changes variables was approximately Gaussian. In the case of
outliers (as observed for the SPMC, 1/f slopes, and entropy), we winsorized values
to the 95th percentile. For visualization, spatial clusters were defined based on a
minimum distance of 10 mm, and by exceeding a size of 25 voxels. We identified
regions associated with peak activity based on cytoarchitectonic probabilistic maps
implemented in the SPM Anatomy Toolbox (Version 2.2c)112. If no assignment
was found, the most proximal assignment within the cluster to the coordinates
reported in Supplementary Table 1 was reported.

Temporal dynamics of thalamic engagement. To visualize the modulation of tha-
lamic activity by load, we extracted signals within a binary thalamic mask extracted
from the Morel atlas113, including all subdivisions. Preprocessed BOLD timeseries
were segmented into trials, spanning the period from the stimulus onset to the
onset of the feedback phase. Given a time-to-peak of a canonical hemodynamic
response function (HRF) between 5 and 6 s, we designated the 3 s interval from 5 to
8 s following the stimulus onset trigger as the stimulus presentation interval, and
the 2 s interval from 3 to 5 s as the fixation interval, respectively. Single-trial time
series were then temporally normalized to the temporal average during the
approximate fixation interval. To visualize inter-individual differences in thalamic
engagement (see Fig. 7c), we performed a median split across participants based on
their individual drift modulation.

Thalamic loci of behavioral PLS. To assess the thalamic loci of most reliable
behavioral relations (Fig. 7d), we assessed bootstrap ratios within two thalamic
masks. First, for nucleic subdivisions, we used the Morel parcellation scheme as
consolidated and kindly provided by Hwang et al.39 for 3 mm data at 3 T field
strength. The abbreviations are as follows: AN: anterior nucleus; VM: ven-
tromedial; VL: ventrolateral; MGN: medial geniculate nucleus; LGN: lateral geni-
culate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP: lateral-posterior; IL:
intra-laminar; VA: ventral-anterior; PuM: medial pulvinar; Pul: pulvinar proper;
PuL: lateral pulvinar. Second, to assess cortical white-matter projections we con-
sidered the overlap with seven structurally-derived cortical projection zones sug-
gested by Horn and Blankenburg114, which were derived from a large adult sample
(N= 169). We binarized continuous probability maps at a relative 75% threshold
of the respective maximum probability, and re-sliced masks to 3 mm (ICBM 2009c
MNI152).

Statistical analyses
Assessment of covarying load effect magnitudes between measures. To assess a linear
modulation of dependent variables, we calculated first-level beta estimates for the
effect of load (y= intercept+ β*LOAD+ e) and assessed the slope difference from
zero at the group level using two-sided paired t-tests. We performed post hoc
comparisons between adjacent load conditions using two-tailed paired t-tests, and
adjusted p values according to the Benjamini–Hochberg false discovery rate
procedure115 to account for multiple comparisons. We assessed the relation of
individual load effects between measures of interest by means of partial repeated
measures correlations, which we implemented in R 4.0.3116. In a simplified form,
repeated measured correlation117 fits a linear model between two variables x1 and
x2 of interest, while controlling for repeated assessments within participants

½x1 � 1þ β1*IDþ β2*x2þ e�: ð1Þ
Crucially, to exclude bivariate relations that exclusively arise from the overall main
effect of number of targets, we added target load as an additional categorical
covariate

½x1 � 1þ β1*IDþ β2*LOADþ β3*x2þ e� ð2Þ
to remove group condition means. Resulting estimates characterize the group-wise
coupling in the (zero-centered) magnitude of changes between the DV and the IV
across the four load levels. To identify the directionality of the coupling, we
assessed the direction of main effects for x1 and x2. We statistically compared this
model to a null model without the term of interest

½x1 � 1þ β1*IDþ β2*LOADþ e� ð3Þ
to assess statistical significance. We report the bivariate residual effect size by
assessing the square root of partial eta squared. We extend this model with
additional beta*covariate terms when reporting control for additional covariates.
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Within-subject centering. To visually emphasize effects within participants, we use
within-subject centering across repeated measures conditions by subtracting
individual cross-condition means and adding global group means. For these
visualizations, only the mean of the dependent values directly reflects the original
units of measurement, as individual data points by construction do not reflect
between-subject variation averaged across conditions. This procedure equals the
creation of within-subject standard errors118. Within-subject centering is exclu-
sively used for display and explicitly noted in the respective legends, but is not
required for statistical calculations (i.e., our model resolves these intended esti-
mates directly).

Univariate cluster-based permutation analyses. For data with a low-dimensional
structure (e.g., based on a priori averaging or spatial cluster assumptions), we used
univariate cluster-based permutation analyses (CBPAs) to assess significant mod-
ulations by target load or with stimulus onset. These univariate tests were per-
formed by means of dependent samples t-tests, and cluster-based permutation
tests119 were performed to control for multiple comparisons. Initially, a clustering
algorithm formed clusters based on significant t-tests of individual data points (p <
0.05, two sided; cluster entry threshold) with the spatial constraint of a cluster
covering a minimum of three neighboring channels. Then, the significance of the
observed cluster-level statistic (based on the summed t values within the cluster)
was assessed by comparison to the distribution of all permutation-based cluster-
level statistics. The final cluster p value that we report in all figures was assessed as
the proportion of 1000 Monte Carlo iterations in which the cluster-level statistic
was exceeded. Cluster significance was indicated by p values below 0.025 (two-sided
cluster significance threshold).

Multivariate partial least-squares analyses. For data with a high-dimensional
structure, we performed multivariate partial-least squares analyses30,120. To assess
main effect of probe uncertainty or stimulus onset, we performed Task PLS ana-
lyses. Task PLS begins by calculating a between-subject covariance matrix (COV)
between conditions and each neural value (e.g., time-space-frequency power),
which is then decomposed using singular value decomposition (SVD). This yields a
left singular vector of experimental condition weights (U), a right singular vector of
brain weights (V), and a diagonal matrix of singular values (S). Task PLS produces
orthogonal latent variables (LVs) that reflect optimal relations between experi-
mental conditions and the neural data. To examine multivariate relations between
neural data and other variables of interest, we performed behavioral PLS analyses.
This analysis initially calculates a between-subject correlation matrix (CORR)
between (1) each brain index of interest (e.g., spectral power, first-level BOLD beta
values) and (2) a second “behavioral“ variable of interest (note that although called
behavioral, this variable can reflect any variable of interest, e.g., behavior, pupil
dilation, spectral power). CORR is then decomposed using singular value
decomposition (SVD): SVDCORR=USV′, which produces a matrix of left singular
vectors of cognition weights (U), a matrix of right singular vectors of brain weights
(V), and a diagonal matrix of singular values (S). For each LV (ordered strongest to
weakest in S), a data pattern results which depicts the strongest available relation
between brain data and other variables of interest. Significance of detected relations
of both PLS model types was assessed using 1000 permutation tests of the singular
value corresponding to the LV. A subsequent bootstrapping procedure indicated
the robustness of within-LV neural saliences across 1000 resamples of the data121.
By dividing each brain weight (from V) by its bootstrapped standard error, we
obtained “bootstrap ratios” (BSRs) as normalized robustness estimates. We gen-
erally thresholded BSRs at values of ±3.00 (∼99.9% confidence interval). We also
obtained a summary measure of each participant’s robust expression of a particular
LV’s pattern (a within-person “brain score”) by multiplying the vector of brain
weights (V) from each LV by each participant’s vector of neural values (P), pro-
ducing a single within-subject value: Brain score= VP′.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Primary EEG, fMRI, and behavioral data are available from https://osf.io/ug4b8/ (https://
doi.org/10.17605/OSF.IO/UG4B8). Structural MRI data are exempt from public sharing
according to informed consent. All data are available from the corresponding authors
upon reasonable request. Source data are provided with this paper.

Code availability
Experiment code is available from https://git.mpib-berlin.mpg.de/LNDG/multi-attribute-
task. Analysis code is available from https://git.mpib-berlin.mpg.de/LNDG/stateswitch.
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Supplementary Text 1. Parameter interrelations. To better understand individual differences in 
behavioral performance, we explored inter-individual associations between model parameter estimates 
and ‘raw’ median RT and mean accuracy. Linear drift rate decreases were inter-individually associated 
with decreases in accuracy (EEG: r = .35, p = .015, MRI: r = .46, p = .001), but not RT increases (both 
p > .05), whereas non-decision-time (NDT) increases tracked individual RT increases (EEG: r = .56, p 
= 3e-5, MRI: r = .64, p = 2e-6), but not accuracy decreases (both p > .05). For single targets, faster RTs 
were associated with larger drift rates (EEG: r = -.63, p = 3e-6, MRI: r = -.47, p = .002), lower non-
decision times (EEG: r = .41, p = .005, MRI: r = .58, p = 3e-5), and lower boundary separation (EEG: r 
= .58, p = 3e-5, MRI: r = .5, p = 6e-4). More accurate performance for single targets was related to 
higher drift rates (EEG: r = .74, p = 3e-9; MRI: r = .79, p = 3e-10), but unrelated to boundary separation 
(EEG: r = .23, p = .121, MRI: r = .18, p = .244) or non-decision times (EEG: r = -.27, p = .069, MRI: r = 
-.38, p = .011). Amongst model parameters, we observed no parameter relations for single targets (all 
p > .05). However, we observed intercept-change correlations: participants with larger drift rates for 
single targets exhibited strong linear drift rate reductions (EEG: r = -.93, p = 4e-22, MRI: r = -.88, p = 
1e-15). Moreover, participants with larger boundary separation showed stronger linear increases in non-
decision time (r = .46, p = 9e-4, MRI: r = .59, p =2e-5). Non-decision time under selective attention, 
putatively dominantly reflecting visual encoding time, did not relate to changes in drift rate or NDT (both 
p > .05). Similarly, boundary separation did not relate to drift rate decreases (both p > .05) and drift rates 
under selective attention were unrelated to NDT increases (both p > .05). 
 
Supplementary Text 2. Decoding motor preparation signals. We performed a decoding analysis to 
further explore the emergence of response-specific information across the trial. In particular, we trained 
a decoder based jointly on the spatial topography of the single-trial broadband time series (~ single-trial 
CPP), and of the average 8-15 Hz power (estimated using 7 cycle wavelets), both response-locked. 
Broadband and mu-beta signals were spatially concatenated at each time point, following z-scoring 
across channels within each measure. This response-locked motor execution classifier was then tested 
on each time point of signals aligned with stimulus onset (and thus probe onset by virtue of the fixed 3s 
stimulus presentation period) to assess the ability to classify motor preparation prior to probe onset. For 
classification analyses, we used linear support-vector machines (SVM) 1 via the libsvm implementation 
(www.csie.ntu.edu.tw/~cjlin/libsvm). In particular, we decoded ipsi- vs. contralateral response execution 
in each trial (in line with the lateralized mu-beta analyses). The analysis was separately performed for 
four splits of trials: (1) all trials, (2) single-target condition trials, (3) multi-target condition trials, in which 
all cued features converge on the same left or right response for their respective prevalent options during 
the trial (“response convergence”), (4) multi-target condition trials, in which at least one response would 
not converge with all other responses. Within each group, the minimum number of available trials across 
the left and right conditions were randomly selected and split into training (90% of trials) and test sets 
100 times for cross-validation. [This approach maximizes the available trials for each split, but includes 
unequal numbers of trials between splits. Hence, differences in decoding levels between splits should 
be interpreted with caution.] Results showed that classification accuracy for left vs. right responses was 
notably above chance and maximal at response, highlighting the adequacy of the response-aligned 
classifier (Supplementary Figure 2c). Applying this “decoder” to signals aligned to stimulus onset 
indicated (a) slightly above chance classification for single targets, and (b) slightly below chance 
classification for multi-targets without response convergence just prior to response (Supplementary 
Figure 2d). The latter may indicate a representation of the unobserved, alternate motor response, 
potentially suggesting “changes of mind” following probe presentation. These results jointly allude to the 
detectable presence of some decision information just prior to probe presentation (but not during a 
protracted period during stimulus presentation), while also highlighting that much of the eventual 
response information emerges following probe presentation. 
 
Supplementary Text 3. Behavioral benefits due to convergent responses. To reduce response 
mapping demands following probe presentation, we fixed response mapping for the two options of each 
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feature throughout the experiment. Notably, the correct choices (i.e., prevalent options) for multiple cued 
features can converge on the same left or right response in a given trial (“response convergence”). This 
potential to prepare motor action prior to probe presentation co-varies as a function of load. To assess 
the influence of this response convergence on our results, we ran an additional HDDM that 
simultaneously modelled both a main effect of load, as well as categorical response convergence. 
Notably, the obtained target load effects on drift rate and NDT were virtually identical to those observed 
in the selected model in both sessions (reliability of all linear effects: r >= .9 p <.001), while linear 
decreases in drift and increases in NDT were also observed as a function of response divergence (i.e., 
lower drift and higher NDT if the probed attribute required a differential response than the other cued 
attributes; shown in Supplementary Figure 1e for the EEG session; qualitatively similar results were 
obtained for MRI session; all linear effects p < .001). This suggests that response convergence 
systematically impacted decision processes, but cannot account for the main effects of target load. 
However, the large amount of added model parameters introduced partial convergence issues. We 
therefore chose the simpler model without response convergence for our main analyses. 
 
Supplementary Text 4. NDT increases indicate extended motor preparation demands. We 
observed a parametric increase in non-decision time (NDT) with target uncertainty (Figure 2b bottom) 
that described shifts in RT distribution onset (Supplementary Figure 3a). NDT is thought to characterize 
the duration of processes preceding and following evidence accumulation, i.e., probe encoding and 
planning/execution of the motor response. We therefore examined sensory probe- and response-related 
ERP components regarding their modulation by prior target uncertainty. We time-locked the CPP to the 
NDT group estimate for a single target – for which no button remapping was required – and (2) to the 
condition-wise NDT estimate. However, we observed no shift in CPP onset (Supplementary Figure 3b), 
suggesting constant visual encoding time. To probe increases during response preparation, we 
assessed parametric changes in ERP amplitudes during the interval spanning the final 100 ms prior to 
response. This interval covered the timeframe of indicated NDT increases, after accounting for the 
constant probe encoding duration (Supplementary Figure 3b). Notably, we observed a late frontal 
potential that increased in amplitude (Supplementary Figure 3d) and whose onset corresponded to the 
temporal NDT shift (Supplementary Figure 3c) after controlling for constant encoding duration 
(Supplementary Figure 3b). This suggests that baseline NDT estimates approximate the duration of 
probe encoding 2, whereas NDT increases characterize increased demands for transforming the 
sensory decision into a motor command 3. This further suggests that drift diffusion modelling 
successfully dissociated contributions from evidence integration, sensory encoding, and motor 
preparation. Interestingly, evidence accumulation consistently peaked at/near response execution, 
suggesting that additional motor demands may unravel in parallel, rather than succeed finished 
integration (as is often assumed in sequential sampling models). 
 
Supplementary Text 5. Behavioral PLS of spectral power during stimulus presentation. Task PLS 
describes the multivariate co-variation of neural indices (here spectral power) with categorical condition 
labels (here target load in the main analysis). However, neural changes that optimally relate to the main 
effect of target load may not also optimally capture inter-individual behavioral differences. For example, 
behavioral relations could be more specific to individual frequency bands than the effect of target load 
that was jointly observed across frequency ranges. The latter can be probed by means of a behavioral 
PLS model, which targets the optimal relation of inter-individual behavioral differences to multivariate 
power changes across frequency bands. To probe whether inter-individual relations of power modulation 
to behavior would vary from the mean changes as identified via task PLS, we calculated a behavioral 
PLS by considering the individual linear change in spectral power with target uncertainty. This revealed 
a similar multivariate loading pattern as observed for the task PLS (Supplementary Figure 4b), with high 
agreement between individual brainscores (r = .7, p < .001), suggesting that the identified frequency 
ranges jointly contributed to behavioral relations.  
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Supplementary Text 6. Pre-stimulus alpha power increases with load, but does not relate to 
behavioral changes or power changes during sensation. Furthermore, decreases in pre-stimulus 
alpha power have been linked to increases in cortical excitability at stimulus onset 4,5. To probe whether 
expected uncertainty modulated pre-stimulus alpha power, we performed another task PLS, covering 
the final second of the fixation interval prior to stimulus onset. This analysis indicated that pre-stimulus 
alpha power increased alongside uncertainty (Supplementary Figure 4c). Notably, in contrast to current 
results, elevated levels of anticipatory alpha power are often associated with decreased gamma power 
upon stimulus onset. Notably, linear models did not indicate associations between pre-stimulus alpha 
power increases across load with either drift rate decreases [r(137) = 0.02, 95%CI [-0.15, 0.18], p = 
0.86], non-decision time increases [r(137) = 0.06, 95%CI [-0.1, 0.23], p = 0.45] or increases on the 
SPMC [r(137) = -0.13, 95%CI [-0.29, 0.04], p = 0.13]. These results are in line with increasing evidence 
suggesting that anticipatory alpha power modulation more closely tracks subjective confidence in 
upcoming decisions than sensory fidelity 6,7. 
 
Supplementary Text 7. Steady-state visually evoked potential (SSVEP) magnitude is not 
modulated during sensation. Moreover, SSVEP magnitude has been suggested as a signature of 
encoded sensory information 8, that is enhanced by attention 9,10 and indicates fluctuations in excitability 
11. However, despite a clear SSVEP signature, we did not observe significant effects of encoding 
demands on the global SSVEP magnitude (Supplementary Figure 4d). As attentional effects on SSVEP 
magnitude have been shown to vary by SSVEP frequency 12, the 30 Hz range may have been 
suboptimal here. Furthermore, the SSVEP frequency was shared across different features, thus not 
allowing us to assess whether uncertainty modulated the selective processing of single features. 
Implementing feature-specific flicker frequencies may overcome such limitations in future work, and 
allow to assess the changes in feature-specific processing under uncertainty. 
 
Supplementary Text 8. Rhythm-specific indices in theta and alpha band relate to multivariate 
spectral power modulation. Finally, as spectral power conflates rhythmic and arrhythmic signal 
contributions in magnitude, space and time 13, we performed single-trial rhythm detection, observing 
similar decreases in the duration and power of alpha rhythms (see Supplementary Figure 4e) that were 
jointly related to stronger increases on the latent factor [duration: r(137) = -0.61, 95%CI [-0.71, -0.49], p 
= 1.31e-15; power: r(137) = -0.63, 95%CI [-0.72, -0.52], p = 9.66e-17]. Notably, this analysis indicated 
increases in theta duration, but not power, suggesting that narrowband theta power changes mainly 
reflected modulations in the duration of non-stationary theta rhythms, rather than changes in their 
strength. In line with this suggestion, increases on the spectral power factor related to increases in theta 
duration [r(137) = 0.19, 95%CI [0.02, 0.35], p = 0.03], but not theta SNR [r(137) = 0.09, 95%CI [-0.08, 
0.25], p = 0.31]. 
 
Supplementary Text 9. A second LV may indicate decreased task engagement due to heightened 
difficulty at higher uncertainty levels. A 2nd significant LV (p =.012) indicated strong positive loadings 
in angular gyrus, middle frontal gyrus, and inferior frontal gyrus, as well as occipital cortex (see 
Supplementary Figure 5b). Negative loadings were observed dominantly in medial PFC, precuneus and 
V5. This component increased from selective attention to target load 2, but then declined towards higher 
loads. Decreases in angular gyrus have been strongly to increased visual working memory load 14,15. 
Increases in DMN regions, in addition to decreased prefrontal activity suggest that this component 
reflects relative task disengagement towards high load conditions, while increases in lateral visual cortex 
may reflect increased entrainment, and lack of top-down inhibition. In line with more negative loadings 
on this component being detrimental, we observed that inter-individually higher brainscores (i.e., positive 
loadings) were associated with lower non-decision times during selective attention (r = -0.46, p = .002), 
while stronger within-subject decreases with load were associated with larger individual NDT increases 
[r(122) = -0.18, 95%CI [-0.35, -0.01], p = 0.04] but not changes in drift rate [r(122) = 0.01, 95%CI [-0.17, 
0.18], p = 0.95]. Larger decreases on this component were moreover related to more constrained 
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increases in spectral modulation [r(122) = 0.39, 95%CI [0.23, 0.53], p = 6.83e-6]. Jointly, this suggests 
that individual drop-offs in the positive cluster of regions reflects decreased task engagement under 
increased difficulty, with adverse behavioral consequences. 
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Supplementary Figure 1. Additional behavioral analyses. (a) Accuracies for single target cue and 
maximum target uncertainty. For all features, mean accuracy was above chance accuracy (0.5, 
indicated by broken lines) at the group level: all *** p < 1e-8 for two-sided paired t-test vs. chance 
accuracy (Benjamini-Hochberg adjusted). Dots indicate individual accuracies. Bars indicate means +/- 
SEM.  (b) Median reaction times (mdRT) and mean accuracies by load. Significant load effects were 
observed for all variables (all pairwise comparisons Benjamini-Hochberg-adjusted): EEG mdRT (***a: p 
= 2e-25; ***b: p = 3e-18; ***c: p = .0001; linear: b = 0.14, 95%CI = [0.13, 0.15], t(46) = 26.35, p = 2e-
29), MRI mdRT (***a: p = 2e-19; ***b: p = 1e-17; ***c: p = .0002; linear: b = 0.11, 95%CI = [0.1, 0.12], 
t(43) = 19.57, p = 5e-23), EEG Acc (***a: p = 2e-5; ***b: p = 0.005; ***c: p = .01; linear: b = -0.03, 95%CI 
= [-0.04, -0.03], t(46) = -9.86, p = 6e-13), MRI Acc (***a: p = 4e-5; linear: b = -0.02, 95%CI = [-0.03, -
0.02], t(43) = -7.5, p = 2e-9) (c-e) HDDM model comparison. (c) DIC-based model comparison 
indicates that full model, including threshold modulation, provides the best group fit to the behavioral 
data. However, load-related threshold increases (c) were not supported by EEG-based signatures (see 
d). The inset shows an additional comparison of the selected model with an alternative model including 
starting point variation across load levels (displayed in red). Due to very constrained fit improvements, 
we selected the simpler model without starting point variation for further analyses. (d) Threshold 
increases in full model are not indicated by electrophysiology. The full model indicates additional 
threshold (also called boundary separation) increases with added target load (***a: p = 1.5e-19; ***b: p 
= .003; linear: b = 0.14, 95%CI = [0.12, 0.17], t(46) = 14.15), with qualitatively identical effects on drift 
rate and NDT. Boundary separation captures the conservativeness of the decision criterion and has 
been related to decision conflict during the choice process (e.g., 16). EEG-based signatures of evidence 
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integration do not indicate threshold differences. While the full model suggested increased boundary 
separation, neither of the electrophysiological proxies of evidence bounds mirrors such increases (CPP: 
linear: b = -8.7e-6, 95%CI = [-5.2e-5, 3.4e-5], t(46) = -0.41; contralateral beta: linear: b = -6.4e-8, 95%CI 
= [-2.9e-7, 1.6e-7], t(46) = -0.58). While this suggests the absence of threshold increases 17, it alternately 
questions the sensitivity of electrophysiological threshold estimates, which should be investigated with 
specific threshold modulations, such as speed-accuracy trade-off instructions, in future work. Data are 
within-subject centered for visualization (see methods). (e, f) Differences in response convergence 
do not account for main effects of target load. A separate model including both target load and 
response convergence indicated practically identical NDT and drift rate effects of target amount, while 
highlighting additional linear effects of response convergence on drift (linear: b = -0.1, 95%CI = [-0.12, 
-0.08], t(46) = -10.62) and NDT (linear: b = 0.02, 95%CI = [0.01, 0.02], t(46) = 9.79), shown here for the 
EEG session. Data are within-subject centered for visualization (see methods). (f-g) Reliability of 
individual parameter estimates across sessions. A separate hierarchical DDM was fit to data from 
each session. (f) Similar group-level effects were indicated for the MRI and EEG (cf. Figure 2b) session: 
whereas drift rate decreased with load (***a: p = 2e-14; ***b: p = .002; linear: b = -0.43, 95%CI = [-0.49, 
-0.36], t(43) = -12.51, p = 6e-16), non-decision time increased (***a: p = 5e-10; ***b: p = .2e-12; ***c: p 
= .0004; linear: b = 0.06, 95%CI = [0.06, 0.07], t(43) = 18.37, p = 6e-22). (g) Session reliability 
(assessed by Pearson’s correlation of inter-individual differences) was high both for single-
target performance and for linear changes with target load.  Reliability was also high for threshold 
estimates (r = .79, 95%CI = [.64, .88], p = 6e-10). 95%CIs: Drift [.63,.77]; Drift mod. [.28,.72]; NDT 
[.64,.88]; NDT mod. [.41,.79]. (h) Qualitative model fits in the selected HDDM model (exemplarily 
shown for the EEG session). Negative RTs correspond to wrong responses. Model-based (“posterior 
predictive”) values were sampled 50 times within each subject and condition (as implemented in the 
HDDM package), and probability density (100 RT bins) was estimated first within-subject across all 
samples, and then averaged across participants. In empirical data, probability densities were estimated 
across all participants due to the sparse within-subject RT counts. Panels b, d and f indicate p-values 
from two-tailed paired t tests, pairwise comparisons were Benjamini-Hochberg-adjusted for multiple 
comparisons. For all EEG data, n = 47 participants, for MRI and MRI-EEG data, n = 42 participants. 
Source data are provided as a Source Data file. 
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Supplementary Figure 2. Additional drift rate analyses. (a) The slope of lateralized motor 
preparation indicates load-related decreases in drift rate. Slopes of contralateral mu-beta power 
shallow with increasing attentional load levels. Data are shown as means +/- within-subject SEM. The 
bottom left inset displays linear slope estimates, estimated via linear regression from -250 ms to -50 ms, 
relative to response. Data are within-subject centered for visualization (see methods; linear effect: b = 
7e-8, 95%CI = [2e-08, 1e-7], t(46) = 2.98, p = .005). The top right inset shows the topography of 
response-locked mu-beta power, averaged from -50 ms to +50 ms around response. White dots indicate 
the contralateral channels from which data was extracted. (b) The centro-parietal positive potential 
(CPP) does not show clear ramping increases during stimulus presentation. Data are shown as 
means +/- within-subject SEM. The yellow background indicated the stimulus presentation period. Note 
the modulated ramping following the probe onset at the end of stimulus presentation. The inset shows 
the topography of the grand average ERPs, temporally averaged during the final 2 seconds of the 
stimulus presentation period. The black dot indicates channel POz, at which the group-wise CPP was 
maximal (see topography inset in Figure 2c). (c-d) Motor responses can be decoded briefly prior to 
probe onset in 1-target condition. (c) Decoding accuracy of executed motor response (left/right) in 
response-aligned signals from topographies of mu-beta power and broadband amplitudes (see 
Supplementary Text 2). Maximum decoding accuracy was observed around the time of response for all 
assessed conditions. (d) Decoding performance for stimulus-/probe-aligned signals. Decoders were 
trained on the response-aligned signals as in c. Grey shading indicates the stimulus presentation period, 
with the offset coinciding with probe onset. Note that due to the discrete periods, pre-probe above/below 
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chance decoding is unlikely to have resulted exclusively from temporal smoothing due to the wavelet 
transform. Data are shown as means +/- SEM. For visualization, but not statistics, data in d were 
smoothed via moving mean averages of 10 samples. Lines below the plot indicate statistically significant 
deviations from chance decoding (chance level of 50%, two-sided paired t-test, cluster-definition 
threshold p < .05, corrected significance level p < .05). (e-g) Differences between probed stimulus 
attributes do not account for drift rate decreases under target load. (e) Response-locked CPP as 
a function of probed attribute, shown for the single target (complete lines) and four target (broken lines) 
conditions. Data were selected by condition and probed (cf. cued), attribute, ensuring that unique trials 
contributed to each load condition. Data are shown as means +/- within-subject SEM (centered across 
target conditions). (f) Comparison of CPP slopes and thresholds for different probed features, when the 
probe target was known in advance. Slopes (and trend-wise thresholds) were increased for direction 
than for other attribute probes, indicating relatively larger available evidence and more cautious 
responses (putatively ‘easier’ feature). The panel indicates p-values from two-tailed paired t tests 
(Slopes: *a: p = .03; ***b: p = .0003; *c: p = .04; Thresholds: all +: p = .05), pairwise comparisons were 
Benjamini-Hochberg-adjusted for all possible comparisons. Data are within-subject centered for 
visualization (see methods). (g) Load effect of CPP slopes and thresholds for different probed feature 
attributes. CPP slopes (i.e., evidence drift) exhibited load-related decreases for each probed attribute 
(***a: p = 7e-7; ***b: p = 2e-7; ***c: p = 6e-5; ***d: p = 8e-6; two-sided paired t-tests vs. zero, Benjamini-
Hochberg-adjusted), whereas no threshold modulation was indicated for any of the probed attributes 
(all p >= .69). n = 47 participants for all panels. Source data are provided as a Source Data file. 
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Supplementary Figure 3. Non-decision time (NDT) increases putatively relate to additional motor 
demands, not temporal delays in CPP onset. (a) NDT estimates track the onset of individual RT 
distributions (see also 3). Response counts (here shown for the EEG session) were sorted into 40 bins 
of 50 ms each. White lines indicate individual NDT estimates; the red dotted line indicates NDT 
estimates for the single-target condition. (b, c) Relation of CPP (b) and frontal potential (c; depicted 
in panel d) to indicated NDT increases. Data are presented as mean values +/- within-subject SEM. 
Arrows indicate the average probe onset time in b and response time in c, respectively. Black arrows 
signify averages across conditions, while colored arrows indicate condition-wise averages. (b) Average 
NDT estimates for the single-target condition (b, top), but not condition-specific NDT estimates for 
multiple targets (b, bottom), track CPP onset latency – a proxy of visual encoding duration. These results 
suggest that NDT estimates approximate CPP onset only when response preparation can occur in 
advance (i.e., when only a single target is specified); and that NDT increases do not reflect changes in 
visual encoding duration. (c) An additional frontal potential may track residual, condition-wise NDT 
increases above the (presumably constant) encoding duration. The amplitude of the frontal potential 
“ramps” prior to response when more targets were indicated (c, top). This ramping starts approximately 
around the time of residual NDT increases (i.e., condition-wise NDT minus single-target NDT; c, bottom). 
(d) A frontal potential increase prior to response suggests that observed NDT increases reflect 
additional motor preparation demands (e.g., button remapping). Left: Topography of test for linear 
ERP changes as a function of load during the final 200 ms prior to response.  Center: Extracted traces 
averaged within the frontal cluster shown with black asterisks on the left. Data are presented as mean 
values +/- within-subject SEM. Right: Post-hoc tests on amplitudes of the frontal potential across the 
final 100 ms prior to response. Data are within-subject centered for visualization (see methods). The 
panel indicates p-values from two-tailed paired t tests (***a: p = 6e-5; *b: p = .02; linear: b = 6e-5, 95%CI 
= [4e-5, 8e-5], t(46) = 6.54, p = 5e-8), pairwise comparisons were Benjamini-Hochberg-adjusted. n = 47 
participants for all panels. Source data are provided as a Source Data file. 
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Supplementary Figure 4. Additional spectral power analyses prior and during stimulus 
presentation. (a) Task PLS results describing multivariate spectral power changes from the pre-
stimulus baseline (‘central fixation’). This task PLS model targets optimal multivariate spectral power 
differences between stimulus presentation and pre-stimulus baseline periods. Upper panel: Bootstrap 
ratios (BSRs) averaged across the respective channel clusters indicated in Figure 3a. Lower panel: 
individual brainscore changes as a function of stimulus onset. The model indicates joint theta/gamma 
power increases (positive loadings in red) and alpha power decreases (negative loadings in blue) 
following stimulus onset as compared to pre-stimulus baseline. BSR = bootstrap ratio (see methods). 
(b) Behavioral PLS results, linking linear multivariate spectral power changes with target # to 
drift rate decreases and pupil diameter modulation. This behavioral PLS model targets the optimal 
statistical relation between multivariate spectral power data (specifically, linear changes as a function of 
target load) and individual differences in drift rate and pupil modulations. Upper panel: Bootstrap ratios 
(BSRs) averaged across the respective channel clusters indicated in Figure 3a. Lower panel: Individual 
brainscore relations (Pearson’s correlations) to linear changes in drift rate (95%CI = [-.86, -.6]) and pupil 
dimeter (95%CI = [.43, .78]). (c) Parieto-occipital pre-stimulus alpha power increases with target 
load but is not related to drift changes (see Supplementary Text 4).  The time-frequency plot shows 
the results of the task PLS relating multivariate pre-stimulus (‘fixation’) power values to target load 
categories, indicating major loadings in the alpha band. The inset shows the topography of mean BSR 
values and the channels across which results were averaged for the time-frequency plot. The lower plot 
illustrates brainscore increases as a function of target number (***a: p = 7e-9; ***b: p = 7e-7; ***c: p = 
4e-6; linear: b = 1.93, 95%CI = [1.67, 2.19], t(46) = 14.84). Data are within-subject centered for 
visualization (see methods). Linear brainscore increases were not related to drift changes (not shown 
here, see Supplementary Text 4). (d) Steady-state visually evoked potential (SSVEP) amplitude is 
not modulated by attentional load. Top: Time-resolved, spectrally-normalized, SSVEP power, 
averaged across occipital channels (O1, Oz, O2), indicates clear SSVEP increases specifically during 
stimulus presentation. Data are presented as mean values +/- within-subject SEM. Bottom left: 
Topography of stimulus-evoked SSVEP contrast minus baseline. Black dots indicate channels within a 
significant cluster as indicated by two-sided paired t tests, corrected for multiple comparisons via cluster-
based permutations. Bottom right: No linear load-related SSVEP modulation was indicated by CBPA. 
(e) Modulation of rhythm-specific duration and power by target number. Left: Schematic of the 
assessment of amplitude and duration from non-stationary rhythmic events. Right: Topographies of 
relative theta (𝜃) and alpha (𝛼) duration, averaged across target levels. Orange dots indicate the 
channels used to extract the data in e, which were the same channels also used in Figure 3a/b. Target 
load decreased alpha duration (***a: p = 6e-7; linear: b = -1.27, 95%CI = [-1.89, -0.64], t(46) = -4.1) and 
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SNR (***b: p = 5e-5; linear: b = -0.05, 95%CI = [-0.07, -0.03], t(46) = -4.46) and increased theta duration 
(linear: b = 0.61, 95%CI = [0.21, 1.02], t(46) = 3.07), but not SNR (linear: b = 0.01, 95%CI = [0, 0.03], 
t(46) = 1.71). Data are within-subject centered for visualization (see methods). Panels a, c and e indicate 
p-values from two-tailed paired t tests, pairwise comparisons were Benjamini-Hochberg-adjusted for 
multiple comparisons. In panels b and c, permuted p-values result from comparing the strength of latent 
variables against random permutations (see methods). n = 47 participants for all panels. Source data 
are provided as a Source Data file. 
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Supplementary Figure 5. Additional BOLD analyses. (a-c) Full multivariate brainscore loadings 
for the two significant latent variables (LVs) produced by the task PLS (a, b) and behavioral PLS 
(c). Permuted p-values result from comparing the strength of latent variables against random 
permutations (see methods). (b right) The brainscore loadings of the second LV designate an initial 
increase followed by a subsequent decrease towards higher target loads (n = 42 participants, ***a: p = 
9e-8, ***b: p = 2e-9, ***c: p = 4e-6; p-values from two-tailed paired t tests, Benjamini-Hochberg-adjusted 
for multiple comparisons). Data are within-subject centered for visualization (see methods). Thus, the 
negative components of the pattern expressed on the left of panel b become more strongly activated at 
low and high loads, whereas the positive components are maximally expressed when two targets are 
relevant.  (d) Thalamic BOLD magnitude for a median split of high- (n = 21) and low- (n = 21) drift 
rate modulators. The visualization is the same as in Figure 7c, showing means +/- SEMs. The inset 
shows the thalamic ROI in a glass brain view. Source data are provided as a Source Data file. 
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Supplementary Table 1. PLS model peak activations, bootstrap ratios, and cluster sizes. 
 
   MNI Coordinates   
Model Region Hem X Y Z BSR #Voxels 

taskPLS 
LV1 

 
BSR [-3 3] 

Mid-cingulate cortex (MCC) L -6 15 42 13.42 2708 
Inferior Parietal Lobule (IPS) L -45 -45 45 11.14 2664 
Insula Lobe (anterior) 
[33.0 21.0 -3] 

R 33 18 -3 10.86 175 

Inferior Occipital Gyrus  
[-54 -69 -12] 

L -57 -69 -12 10.1 702 

Thalamus 
[-8 -27 -2] 

L -6 -30 -3 9.93 1121 

Superior Frontal Gyrus R 27 -3 54 9.47 880 
Inferior Temporal Gyrus R 51 -60 -12 6.72 265 
Superior Orbital Gyrus L -27 54 -3 6.2 232 
Cerebellum (Crus 1) R 6 -81 -24 6.12 109 
PCC 
[-6.0 -35.0 28.0] 

L -9 -33 27 5.72 62 

Cerebellum (VI) R 30 -63 -30 5.64 59 
Cerebellar Vermis (9)  0 -57 -36 4.32 32 
Cerebellum (Crus 2) L -6 -84 -33 3.82 26 
Pallidum 
 [24.0 3.0 -6.0]; bilateral 

R 24 0 -9 -11.74 3882 

Insula Lobe L -33 -18 6 -11.05 3776 
Superior Frontal Gyrus L -12 36 54 -10.6 2096 
MCC L 0 -15 36 -9.72 706 
Lingual Gyrus R 21 -84 -6 -7.43 440 

 Superior Occipital Gyrus R 27 -96 15 -5.54 318 
 Middle Frontal Gyrus L -33 24 39 -5.48 44 
 Angular Gyrus L -48 -63 27 -5.31 106 
 Superior Parietal Lobule L -21 -45 63 -5.12 94 
 Postcentral Gyrus R 21 -39 63 -4.98 89 

BSR [-6 6] 
(additional 
clusters 
that were 
merged in 
+/- 3 
threshold) 

IFG L -45 9 30 12.576 790 
Insula Lobe L -33 18 -3 10 93 
IFG R 42 27 18 7 32 
IFG R 51 33 -9 -8.69 125 
SMG R 57 -39 39 -7.80 56 
Inferior Temporal Gyrus L -57 -6 -33 -7.57 96 

taskPLS 
LV2 

Angular Gyrus R 54 -51 36 8.69 638 
Middle Frontal Gyrus R 39 18 39 8.24 1238 
IFG (p. Orbitalis) R 42 45 -12 6.37 141 
SupraMarginal Gyrus L -60 -45 33 6.36 317 
Middle Frontal Gyrus L -42 24 33 6.21 477 
Inferior Occipital Gyrus L -27 -90 -12 5.66 110 
Precuneus R 3 -60 45 5.54 383 
Middle Temporal Gyrus R 60 -33 -12 5.26 154 
IFG (p. Triangularis) R 48 18 3 5.07 115 
Lingual Gyrus R 21 -84 -6 4.99 77 
Putamen L -30 3 -3 4.62 115 
Cerebelum (Crus 2) L -9 -81 -27 4.22 34 
Putamen R 24 0 6 3.93 30 
Inferior Occipital Gyrus L -48 -75 -6 -7.92 378 
Inferior Occipital Gyrus R 51 -72 -15 -7.61 706 
Olfactory cortex L -3 18 -12 -5.63 502 
Precuneus L -6 -63 21 -5.56 220 
Superior Parietal Lobule R 27 -54 63 -4.46 39 
Fusiform Gyrus L -24 -45 -15 -4.43 83 
Postcentral Gyrus L -57 -3 42 -4.38 58 
Postcentral Gyrus L -45 -27 57 -4.36 85 
Superior Orbital Gyrus R 21 27 -15 -4.32 25 
Superior Occipital Gyrus R 27 -69 36 -4.29 58 
Precentral Gyrus L -42 0 30 -4.23 28 
Middle Temporal Gyrus L -54 -57 12 -4.18 38 
  -69 -42 9 -4.13 51 
Middle Occipital Gyrus L -30 -81 36 -4.1 60 
Posterior-Medial Frontal L -6 6 60 -3.95 33 
Hippocampus L -27 -18 -21 7.04 111 
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behavioral 
PLS: LV1 

Inferior Temporal Gyrus 
[-56 -24 -30] 

L -57 -24 -30 5.5 40 

Superior Medial Gyrus R 3 63 15 5.43 345 
ParaHippocampal Gyrus R 21 -12 -24 5.35 35 
MCC R 3 -33 48 5.3 174 
Middle Temporal Gyrus L -60 0 -30 4.77 27 
MCC L -12 -45 36 4.72 64 
Superior Frontal Gyrus R 18 51 30 4.68 33 
Fusiform Gyrus R 24 12 -45 4.67 30 
Middle Temporal Gyrus R 57 -3 -15 4.64 239 
Superior Frontal Gyrus L -21 42 36 4.61 26 
Superior Temporal Gyrus L -57 -21 3 4.6 61 
Angular Gyrus R 39 -72 39 4.59 36 
Middle Temporal Gyrus L -51 -3 -21 4.52 72 
Temporal Pole R 36 6 -21 4.42 25 
Superior Medial Gyrus L 9 36 45 4.25 29 
Thalamus L -9 -9 12 -9.73 591 
Superior Frontal Gyrus L -24 -3 69 -5.59 38 
Posterior-Medial Frontal L -3 15 45 -5.22 154 
Superior Occipital Gyrus R 27 -96 21 -5.15 39 
SupraMarginal Gyrus L -60 -48 24 -5.13 28 
Cerebelum (Crus 2) L -6 -84 -33 -5.09 35 
Superior Parietal Lobule L -18 -69 48 -5.07 36 
IFG (p. Opercularis) L -57 15 33 -4.87 173 
Insula Lobe L -30 21 -3 -4.37 44 
Inferior Parietal Lobule L -33 -54 45 -4.03 30 
Superior Frontal Gyrus R 24 0 54 -3.9 51 
Middle Frontal Gyrus R 45 36 33 -3.78 35 

Note: Locations where peaks had to be shifted for a label are indicated with coordinates in the label. 
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